Introduction to Graphical Causal Modelling

Tom Claassen

Institute for Computer and Information Science, Radboud University Nijmegen

SIKS course on Causal Modelling - 30 May, 2023

Radboud University Nijmegen

Outline

(1) Introduction to causality
(2) Prediction vs. causation
(3) Causal graphs and how to read them
(4) Cause-effect estimation
(5) The missing link \& conclusion

Many important research questions are rooted in causality

benefits of exercise and healthy nutrition

racial and gender bias in $A I$

Reconstructed Temperature

Covid vaccine efficacy

Many important research questions are rooted in causality

- Answers typically involve 'what causes it?' and 'how?'

"does human activity cause climate change?"

Many important research questions are rooted in causality

- 'Finding a connection' does not imply we know what causes what ...

"how are violent video games, ADHD, and aggression related?"

Many important research questions are rooted in causality

- Sometimes the difference between 'connection' and 'causality' is blurred ...

"can we infer functional brain connectivity from fMRI data?"

Many important research questions are rooted in causality

- Sometimes it is not even clear if the concept 'cause' makes sense

"can butterflies cause hurricanes?"

Causality: what is it?

How do we recognize causality?

(apparently so simple we don't teach this at school/university)
"Of course I know cause and effect!"

Causality: what is it?

How do we recognize causality?

(apparently so simple we don't teach this at school/university)
"Of course I know cause and effect ..."

What exactly do we mean by 'cause' and 'effect'?

Intuitively obvious, yet curiously hard to define. Often involves aspects of

- things that occur together
- things that follow each other in time
- things that are somehow necessary and/or sufficient to lead to another
- things that change the probability of something else happening
- things connected by a mechanistic chain of events, etc. etc.

Most definitions run into trouble somewhere ...
\square Main 'cause' behind a huge amount of philosophical controversy!

Hume on causality

The subject of causality has a long history in philosophy. For example this is what Hume had to say about it:

"Thus we remember to have seen that species of object we call flame, and to have felt that species of sensation we call heat. We likewise call to mind their constant conjunction in all past instances. Without any farther ceremony, we call the one cause and the other effect, and infer the existence of the one from that of the other."

David Hume, Treatise of Human Nature (1739)

Russell on causality

Some philosophers even proposed to abandon the concept of causality altogether
"All philosophers, of every school, imagine that causation is one of the fundamental axioms or postulates of science, yet, oddly enough, in advanced sciences such as gravitational astronomy, the word `cause' never occurs. The law of causality, I believe, like much that passes muster among philosophers, is a relic of a bygone age, surviving, like the monarchy, only because it is erroneously supposed to do no harm".

Bertrand Russell, On the Notion of Cause (1913)

Causality in statistics

Karl Pearson (one of the founders of modern statistics, well-known from his work on the correlation coefficient) writes:

> "Beyond such discarded fundamentals as 'matter' and 'force' lies still another fetish amidst the inscrutable arcana of even modern science, namely, the category of cause and effect."

Karl Pearson, The Grammar of Science (1892)

Causality in statistics

Karl Pearson (one of the founders of modern statistics, well-known from his work on the correlation coefficient) writes:

> "Beyond such discarded fundamentals as `matter' and 'force' lies still another fetish amidst the inscrutable arcana of even modern science, namely, the category of cause and effect."
> Karl Pearson, The Grammar of Science (1892)

Since then, many statisticians tried to avoid causal reasoning:

- "Considerations of causality should be treated as they have always been in statistics: preferably not at all." (Terry Speed, former president of the Biometric Society).
- "It would be very healthy if more researchers abandon thinking of and using terms such as cause and effect." (Prominent social scientist).

Pragmatic approach

Causality = 'Effective manipulability'

- focus on relevant, measurable influence
- understand why things happen
- predict how things change if we intervene (effect computation)
- not about truth, but about validity (given assumptions)
- allows principled use of maths, statistics \& logic on data and models
- verify by experiment ('Randomized Controlled Trial')

key risk factors in predicting car crashes ...

Effective manipulability

"does human activity cause climate change?"

"do butterflies cause hurricanes?"

Outline

(1) Introduction to causality
(2) Prediction vs. causation
(3) Causal graphs and how to read them
(4) Cause-effect estimation
(5) The missing link \& conclusion

Example - Gene regulation

Example - Gene regulation

Observed gene expression levels

Predicting gene expression levels

Predicting gene expression levels

Observation vs. intervention: gene knock-out experiments

Observation vs. intervention: gene knock-out experiments

What if we do not know the model?

Q: Does X cause Y or does Y cause X? ... or "can't tell"?

Causal direction from model simplicity

Easy to explain as $Y=f(X)+$ noise
(X) \rightarrow (r)

Difficult to explain as

$$
X=f(Y)+\text { noise }
$$

© $\times \otimes$

Chocolate consumption and Nobel prizes

Messerli, F. H., et al. "Chocolate Consumption, Cognitive Function, and Nobel Laureates." N Engl J Med 367.16 (2012): 1562-4.

Chocolate consumption and Nobel prizes ...

Messerli, F. H., et al. "Chocolate Consumption, Cognitive Function, and Nobel Laureates." N Engl J Med 367.16 (2012): 1562-4.

Chocolate consumption and Nobel prizes

Alternative explanation

- unobserved confounder

Chocolate
Nobel

BRITISH MEDICAL JOURNAL

LONDON SATURDAY SEPTEMBER 301950

SMOKING AND CARCI NOMA OF THE LUNG
 preliminary report
 RICHARD DOLL, M.D., M.R.C.P.

Member of the Statistical Research Unit of the Medical Research Council

SMOKING AND CARCI NOMA OF THE LUNG PRELIMINARY REPORT
BY
RICHARD DOLL, M.D., M.R.C.P.

Member of the Statistical Research Unit of the Medical Research Council
Tobacco industry:

Fig. 1.-Percentage of patients smoking different amounts of tobacco daily.

Fig. 2.-Death rate from cancer of the lung and rate of consumption of tobacco and cigarettes.

Treatment of kidney stones

	Treatment A	Treatment B
Recoveries	$273 / 350(78 \%)$	$289 / 350(\mathbf{8 3 \%})$
Total	$562 / 700(80 \%)$	

Question: What treatment would you prefer?

Charig, Clive R., et al. "Comparison of treatment of renal calculi by open surgery, percutaneous nephrolithotomy, and extracorporeal shockwave lithotripsy. "Br Med J (Clin Res Ed) 292.6524 (1986): 879-882.

Treatment of kidney stones

	Treatment A	Treatment B
Small stones	$81 / 87(\mathbf{9 3 \%})$	$234 / 270(87 \%)$
Large stones	$192 / 263(\mathbf{7 3 \%})$	$55 / 80(69 \%$
Recoveries	$273 / 350(78 \%)$	$289 / 350(\mathbf{8 3 \%})$
Total	$562 / 700(80 \%)$	
Treatment A / B		
Recovery		

Question: What treatment would you prefer now?

Treatment of kidney stones

	Treatment A	Treatment B	
Small stones	$81 / 87(\mathbf{9 3 \%})$	$234 / 270(87 \%)$	"Simpson's paradox"
Large stones	$192 / 263(\mathbf{7 3 \%})$	$55 / 80(69 \%$	
Recoveries	$273 / 350(78 \%)$	$289 / 350(\mathbf{8 3 \%})$	
Total	$562 / 700(80 \%)$		

Question: What treatment would you prefer now?

Treatment of kidney stones

	Treatment A	Treatment B
Small stones	$81 / 87(\mathbf{9 3 \%})$	$234 / 270(87 \%)$
Large stones	$192 / 263$ (73\%)	$55 / 80(69 \%$
Recoveries	$273 / 350(78 \%)$	$289 / 350(83 \%)$
Total	$562 / 700(80 \%)$	

Treatment of kidney stones

	Treatment A	Treatment B
Small stones	$81 / 87(\mathbf{9 3 \%})$	$234 / 270(87 \%)$
Large stones	$192 / 263$ (73\%)	$55 / 80(69 \%$
Recoveries	$273 / 350(78 \%)$	$289 / 350(83 \%)$
Total	$562 / 700$	
(80%)		

Question: How to compute the actual effect?

Computing causal effect sizes from observations

- split observed correlation in causal effect and confounding

observed correlation

combination of (possible) causal effect and (possible) confounding

Computing causal effect sizes from observations

- split observed correlation in causal effect and confounding

observed correlation

combination of (possible) causal effect and (possible) confounding

How to compute the causal effect?

- gold standard: randomized controlled trial!
otherwise
- adjustment formula to compensate for confounding (later this session)
- more general: do-calculus [Pearl, Causality 2009]
- not always possible!

Outline

(1) Introduction to causality
(2) Prediction vs. causation
(3) Causal graphs and how to read them
(4) Cause-effect estimation
(5) The missing link \& conclusion

Key model assumption: causal DAG

- real world consists of networks of causally interacting variables,
- structure corresponds to a directed acyclic graph (DAG)
- arcs represent direct causes between variables in the system

causal DAG G
(Directed Acyclic Graph)

Key model assumption: causal DAG

- real world consists of networks of causally interacting variables,
- structure corresponds to a directed acyclic graph (DAG)
- arcs represent direct causes between variables in the system
- subset of these variables observed in experiments

underlying causal DAG G
(Directed Acyclic Graph)

Key model assumption: causal DAG

- real world consists of networks of causally interacting variables,
- structure corresponds to a directed acyclic graph (DAG)
- arcs represent direct causes between variables in the system
- subset of these variables observed in experiments

underlying causal DAG G
(Directed Acyclic Graph)

equivalent ADMG representation
(Acyclic Directed Mixed Graph)

Basic graphical model terminology

- nodes and edges

Paths

- path - sequence of (distinct) nodes $\pi=\left\langle X_{1}, X_{2}, ., X_{k}\right\rangle$ where each successive pair of nodes along the path is adjacent (connected by an edge) in graph G

Collider and non-collider triples

- collider - triple of successive nodes $\langle X, Y, Z\rangle$ along a path, where the edges from X and Z have an arrowhead ('collide') at Y, e.g. $\mathbf{X} \leftrightarrow \mathbf{Y} \leftarrow \mathbf{Z}$
- non-collider - any such triple that is not a collider, e.g. $\mathbf{X} \rightarrow \mathbf{Y} \rightarrow \mathbf{Z}$, $\mathbf{X} \leftarrow \mathbf{Y} \leftarrow \mathbf{Z}$, or $\mathbf{X} \leftarrow \mathbf{Y} \rightarrow \mathbf{Z}$

Collider and non-collider triples

- collider - triple of successive nodes $\langle X, Y, Z\rangle$ along a path, where the edges from X and Z have an arrowhead ('collide') at Y, e.g. $\mathbf{X} \leftrightarrow \mathbf{Y} \leftarrow \mathbf{Z}$
- non-collider - any such triple that is not a collider, e.g. $\mathbf{X} \rightarrow \mathbf{Y} \rightarrow \mathbf{Z}$, $\mathbf{X} \leftarrow \mathbf{Y} \leftarrow \mathbf{Z}$, or $\mathbf{X} \leftarrow \mathbf{Y} \rightarrow \mathbf{Z}$

Ancestral relations

- if $\mathbf{X} \rightarrow \mathbf{Y}$ is in graph G, then X is a parent of Y, and Y is a child of X
- if $\mathbf{X} \leftrightarrow \mathbf{Y}$ is in graph G, then X is a spouse of Y (and v.v.)
- if there is a directed path $\mathbf{X} \rightarrow . . \rightarrow \mathbf{Y}$ in G, then X is ancestor of Y, and Y is a descendant of X

Blocked and unblocked paths

- a path $\pi=\langle\mathrm{X}, . ., \mathrm{Y}\rangle$ is unblocked given set of nodes \mathbf{Z} iff:
- all non-colliders along π are not in \mathbf{Z}
- all colliders along π are in \mathbf{Z} or are ancestor of some $\mathbf{Z} \in \mathbf{Z}$ otherwise the path is blocked

Path $\langle A, B, F, G\rangle$ is unblocked given the empty set ...

Blocked and unblocked paths

- a path $\pi=\langle\mathrm{X}, . ., \mathrm{Y}\rangle$ is unblocked given set of nodes \mathbf{Z} iff:
- all non-colliders along π are not in \mathbf{Z}
- all colliders along π are in \mathbf{Z} or are ancestor of some $\mathbf{Z} \in \mathbf{Z}$ otherwise the path is blocked

... path $\langle A, B, F, G\rangle$ is blocked given F...

Blocked and unblocked paths

- a path $\pi=\langle\mathrm{X}, . ., \mathrm{Y}\rangle$ is unblocked given set of nodes \mathbf{Z} iff:
- all non-colliders along π are not in \mathbf{Z}
- all colliders along π are in \mathbf{Z} or are ancestor of some $\mathbf{Z} \in \mathbf{Z}$ otherwise the path is blocked

... but path $\langle A, B, D, G\rangle$ becomes unblocked given F...

Blocked and unblocked paths

- a path $\pi=\langle\mathrm{X}, . ., \mathrm{Y}\rangle$ is unblocked given set of nodes \mathbf{Z} iff:
- all non-colliders along π are not in \mathbf{Z}
- all colliders along π are in \mathbf{Z} or are ancestor of some $\mathbf{Z} \in \mathbf{Z}$ otherwise the path is blocked

... and path $\langle A, B, D, G\rangle$ is again blocked given $\{D, F\}$.

d-separation

- in a graph G, nodes X and Y are d-separated given Z, iff there are no unblocked paths in G between X and Y given \mathbf{Z}, otherwise they are d-connected

Judea Pearl
(Winner Turing Award 2012)

d-separation

- in a graph G, nodes X and Y are d-separated given \mathbf{Z}, iff there are no unblocked paths in G between X and Y given \mathbf{Z}, otherwise they are d-connected

Judea Pearl
(Winner Turing Award 2012)

Nodes A and G are d-separated given $\{D, F\}$, but d-connected given \{\}, D, or F.

Exercise 1a - Paths and colliders

- collider - triple of successive nodes $\langle X, Y, Z\rangle$ along a path, where the edges from X and Z have an arrowhead ('collide') at Y, e.g. $\mathbf{X} \leftrightarrow \mathbf{Y} \leftarrow \mathbf{Z}$

1. Is $\langle\mathrm{A}, \mathrm{C}, \mathrm{B}, \mathrm{A}\rangle$ a path?
2. Is $\langle\mathrm{A}, \mathrm{C}, \mathrm{E}, \mathrm{D}, \mathrm{B}\rangle$ a (directed) path?
3. Is A an ancestor of D ?
4. What are descendants of B ?
5. Which nodes on the path $\langle\mathrm{B}, \mathrm{D}, \mathrm{E}, \mathrm{C}, \mathrm{A}\rangle$ are non-colliders?
6. A v-structure is a collider between non-adjacent nodes. How many vstructures are in the graph G ?

Exercise 1a - Paths and colliders

- collider - triple of successive nodes $\langle X, Y, Z\rangle$ along a path, where the edges from X and Z have an arrowhead ('collide') at Y, e.g. $\mathbf{X} \leftrightarrow \mathbf{Y} \leftarrow \mathbf{Z}$

1. Is $\langle A, C, B, A\rangle$ a path? No: A and B are not adjacent and A occurs twice.
2. Is $\langle\mathrm{A}, \mathrm{C}, \mathrm{E}, \mathrm{D}, \mathrm{B}\rangle$ a (directed) path? It is a path, but not a directed path.
3. Is A an ancestor of D ? No: there is no directed path from A to D.
4. What are descendants of B ? Nodes $\{B, C, D\}$ (B is also its own descendant!)
5. Which nodes on the path $\langle\mathrm{B}, \mathrm{D}, \mathrm{E}, \mathrm{C}, \mathrm{A}\rangle$ are non-colliders? Nodes C and D.
6. A v-structure is a collider between non-adjacent nodes. How many vstructures are in the graph G ? Two: $A \rightarrow C \leftrightarrow B$, and $C \rightarrow E \leftarrow D$.

Exercise 1b - Blocked and unblocked paths

- a path $\pi=\langle\mathrm{X}, . ., \mathrm{Y}\rangle$ is unblocked given set of nodes \mathbf{Z} iff:
- all non-colliders along π are not in \mathbf{Z}
- all colliders along π are in \mathbf{Z} or are ancestor of some $\mathbf{Z} \in \mathbf{Z}$ otherwise the path is blocked

1. Is $\mathrm{C} \leftrightarrow \mathrm{B} \rightarrow \mathrm{D}$ blocked by ('given') B ?
2. Is $A \rightarrow C \leftrightarrow B$ blocked given E ?
3. Is $A \rightarrow C \rightarrow E \leftarrow D$ blocked? (given empty set $\mathbf{Z}=\{ \}$)
4. Is path $\langle A, C, B, D\rangle$ blocked by $\{C, E\}$?
5. Which set(s) of nodes (if any) unblock a path from A to B ?
6. Claim: 'A path between two nodes can be blocked, iff they are nonadjacent'. True or false?

Exercise 1b - Blocked and unblocked paths

- a path $\pi=\langle\mathrm{X}, . ., \mathrm{Y}\rangle$ is unblocked given set of nodes \mathbf{Z} iff:
- all non-colliders along π are not in \mathbf{Z}
- all colliders along π are in \mathbf{Z} or are ancestor of some $\mathbf{Z} \in \mathbf{Z}$ otherwise the path is blocked

1. Is $C \leftrightarrow B \rightarrow D$ blocked by ('given') B ? Yes.
2. Is $A \rightarrow C \leftrightarrow B$ blocked given E ? No.
3. Is $A \rightarrow C \rightarrow E \leftarrow D$ blocked? (given empty set $\mathbf{Z}=\{ \}$) Yes.
4. Is path $\langle A, C, B, D\rangle$ blocked by $\{C, E\}$? No.
5. Which set(s) of nodes (if any) unblock a path from A to B ? Any subset of $\{C, D, E\}$ containing at least one node from $\{C, E\}$.
6. Claim: 'A path between two nodes can be blocked, iff they are nonadjacent'. True or false? False: reverse counter example $\langle B, D, E, C\rangle$.

Exercise 1c - d-separation

- in a graph G, nodes X and Y are d-separated given Z, iff there are no unblocked paths in G between X and Y given \mathbf{Z}, otherwise they are d-connected

1. Are A and $\mathrm{B} d$-separated? (given empty set $\}$)
2. Are C and $D d$-separated by B ?
3. Are A and E d-separated by C?
4. Are A and $D d$-separated by $\{B, E\}$?
5. Which set(s) of nodes (if any) would d-separate B and E ?
6. True or false: 'Two nodes can be d-separated, iff they are non-adjacent'?

Exercise 1c - d-separation

- in a graph G, nodes X and Y are d-separated given \mathbf{Z}, iff there are no unblocked paths in G between X and Y given \mathbf{Z}, otherwise they are d-connected

1. Are A and $B d$-separated? (given empty set \{\}) Yes.
2. Are C and D d-separated by B? Yes.
3. Are A and $E d$-separated by C ? No: path $\langle A, C, B, D, E\rangle$ is unblocked by C.
4. Are A and D-separated by $\{B, E\}$? No: $\langle A, C, E, D\rangle$ remains unblocked.
5. Which set(s) of nodes (if any) would d-separate B and E ? \{ $C, D\},\{A, C, D\}$
6. True or false: 'Two nodes can be d-separated, iff they are non-adjacent'? True for DAGs, but not for ADMGs in general!

Linking graphs to data

- graphical models offer an intuitive means to model causal interactions
- so far we only considered the causal structure ...
- ... now we need to link the graphs to data
\Rightarrow enter the Causal Bayesian Network!

causal DAG G

Bayesian network

A Bayesian Network (BN) is a pair (G, p), where

- G is a directed acyclic graph over variables $\mathbf{X}=\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, . ., \mathrm{X}_{K}\right\}$
- $\quad p$ is a joint probability distribution over \mathbf{X} that factorizes according to G

Bayesian network

A Bayesian Network (BN) is a pair (G, p), where

- G is a directed acyclic graph over variables $\mathbf{X}=\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, . ., \mathrm{X}_{K}\right\}$
- $\quad p$ is a joint probability distribution over \mathbf{X} that factorizes according to G

$$
\begin{aligned}
& p(\mathbf{X})=\prod_{k=1}^{K} p\left(X_{k} \mid p a\left(X_{k}\right)\right) \\
& p(A, B, C, D)= \\
& \quad p(A) p(B) p(C \mid A, B) p(D \mid B, C)
\end{aligned}
$$

factorized joint probability distribution

Causal Bayesian network

A Bayesian Network (G, p) is causal if

- all and only the directed edges in G correspond to direct causal relations,
- it satisfies the Causal Markov condition:
"In a causal DAG G, every node is probabilistically independent of its nondescendants given its parents (direct causes) in G."

$$
X_{i} \Perp n d\left(X_{i}\right) \mid p a\left(X_{i}\right)
$$

Causal Bayesian network

A Bayesian Network (G, p) is causal if

- all and only the directed edges in G correspond to direct causal relations,
- it satisfies the Causal Markov condition:
"In a causal DAG G, every node is probabilistically independent of its nondescendants given its parents (direct causes) in G."

$$
\begin{aligned}
& A \Perp B \mid- \\
& B \Perp A \mid- \\
& D \Perp A \mid B, C
\end{aligned}
$$

As a result

- d-separation \Rightarrow probabilistic independence

Structural Causal Model

- each child-parent family in the causal DAG G corresponds to a deterministic function

$$
X_{i}=f_{i}\left(p a\left(X_{i}\right), \varepsilon_{i}\right)
$$

with ε_{i} representing all exogenous influences (noise) on X_{i}

- collection is a Structural Causal/Equation Model (SCM/SEM)

$$
\begin{aligned}
& A=f_{A}\left(\varepsilon_{A}\right) \\
& B=f_{B}\left(\varepsilon_{B}\right) \\
& C=f_{C}\left(A, B, \varepsilon_{C}\right) \\
& D=f_{D}\left(B, C, \varepsilon_{D}\right)
\end{aligned}
$$

Structural Causal Model

- each child-parent family in the causal DAG G corresponds to a deterministic function

$$
X_{i}=f_{i}\left(p a\left(X_{i}\right), \varepsilon_{i}\right)
$$

with ε_{i} representing all exogenous influences (noise) on X_{i}

- collection is a Structural Causal/Equation Model (SCM/SEM)

$$
\begin{aligned}
& A=\varepsilon_{A} \quad \varepsilon_{i} \sim N\left(0, \sigma_{i}\right) \\
& B=\varepsilon_{B} \\
& C=\alpha A+\beta B+\varepsilon_{C} \\
& D=\gamma B+\delta D+\varepsilon_{D}
\end{aligned}
$$

Outline

(1) Introduction to causality
(2) Prediction vs. causation
(3) Causal graphs and how to read them
(4) Cause-effect estimation
(5) The missing link \& conclusion

Interventions

- intervening $=$ actively changing the world

not this one ...

but this one

Interventions

- intervening $=$ actively changing the world

Examples

- prescribing a treatment (or placebo) in an RCT
- gene knock-out experiment
- deciding to quit smoking
- governments changing laws / taxation levels,
- lowering home room temperatures
- adding a catalyst to a chemical reaction, etc.

Interventions

- intervening $=$ actively changing the world

Examples

- prescribing a treatment (or placebo) in an RCT
- gene knock-out experiment
- deciding to quit smoking
- governments changing laws / taxation levels,
- lowering home room temperatures
- adding a catalyst to a chemical reaction, etc.

Common types of interventions

- hard/soft - (directly forcing a variable to a specific value vs. indirectly stimulating a variable to e.g. higher/lower values)
- surgical/fat-hand - (very precisely affecting only the target intervention variable vs. having possible unintended side-effects)
- perfect interventions = hard+surgical (Pearl's do-operator, see next)
- mechanism interventions (acting on the functional form of the relations)

Intervention in a Structural Causal Model

Perfect intervention in SCM

- externally force a node to a specific value: $\operatorname{do}\left(X_{i}=x_{i}\right)$
- replace structural equation $f_{i}(.$.$) with constant x_{i}$
- corresponds to removing all incoming arcs to X_{i} in causal DAG G

$$
\begin{aligned}
A & =f_{A}\left(\varepsilon_{A}\right) \\
B & =f_{B}\left(\varepsilon_{B}\right) \\
C & =c \\
D & =f_{D}\left(B, C, \varepsilon_{D}\right)
\end{aligned}
$$

Computing what happens after an intervention

We can understand / predict the effect of an intervention if we can rewrite the (unknown) interventional distribution in terms of the known observed distribution.

$$
\begin{aligned}
& p(A, B, C, D)= \\
& \quad p(A) p(B) p(C \mid A, B) p(D \mid B, C)
\end{aligned}
$$

original observed joint probability distribution

$$
p(A, B, C, D \mid d o(C=c))=\ldots ?
$$

interventional distribution under $\operatorname{do}(C=c)$
causal DAG G with intervention on C

Computing the causal effect: adjustment

- The difference between the expectation under pre- and post-interventional distribution then corresponds to the causal effect
- Difficult to compute in general : Pearl's do-calculus

causal DAG G with
intervention on C

Computing the causal effect: adjustment

- The difference between the expectation under pre- and post-interventional distribution then corresponds to the causal effect
- Difficult to compute in general : Pearl's do-calculus
- Fortunately, for a large class of problems there exists a relatively straightforward procedure: 'adjusting for the parents'

$$
\begin{aligned}
& p(Y=y \mid d o(X=x)) \\
& \quad=\sum_{P a(X)} p(y \mid x, P a(X)) p(P a(X))
\end{aligned}
$$

adjustment formula for intervention on X
causal DAG G with
intervention on C

Back-door criterion

- we can generalize adjustment to 'admissible' sets (instead of just parents)

Theorem: A set of nodes \mathbf{S} is admissible for adjustment to find the causal effect of X on Y, if:

- $X, Y \notin \mathbf{S}$
- no element of \mathbf{S} is a descendant of X
- \mathbf{S} blocks all back-door paths $X \leftarrow$.. Y (all paths between X and Y that start with an incoming arc on X)

B is admissible for computing
the causal effect of C (or A) on D

Back-door criterion

- we can generalize adjustment to 'admissible' sets (instead of just parents)

Theorem: A set of nodes \mathbf{S} is admissible for adjustment to find the causal effect of X on Y, if:

- $X, Y \notin \mathbf{S}$
- no element of \mathbf{S} is a descendant of X
- \mathbf{S} blocks all back-door paths $X \leftarrow$.. Y (all paths between X and Y that start with an incoming arc on X)

B is admissible for computing the causal effect of C (or A) on D

$$
\begin{aligned}
p(Y=y \mid d o(X=x)) & =\sum_{\mathbf{s}} p(y \mid x, \mathbf{S}=\mathbf{s}) p(\mathbf{S}=\mathbf{s}) \\
(& \left.=\int p(y \mid x, \mathbf{s}) p(\mathbf{s}) d \mathbf{s}\right)
\end{aligned}
$$

Average Causal Effect (ACE)

- if we can predict what happens on an intervention we can consider quantifying the causal impact of one variable on another
- the Average Causal Effect (ACE) quantifies the causal effect of X on Y as the difference in expectation of Y under different interventions on X

$$
\begin{aligned}
A C E(X \rightarrow Y) & =E[Y \mid d o(X=1)]-E[Y \mid d o(X=0)] \\
& =\sum_{Y} Y \cdot p(Y \mid d o(X=1))-\sum_{Y} Y \cdot p(Y \mid d o(X=0))
\end{aligned}
$$

ACE for causal effect of binary variable X
on ordinal variable Y

Exercise 2a - Admissible sets

A set of nodes \mathbf{S} is admissible for adjustment for the causal effect of X on Y, if:

- $X, Y \notin \mathbf{S}$
- no element of \mathbf{S} is a descendant of X
- \mathbf{S} blocks all back-door paths $X \leftarrow$.. Y (all paths between X and Y that start with an incoming arc on X)

1. Is B admissible for adjustment to find the causal effect of D on E ?
2. Is $\}$ admissible for the causal effect of A on E ?
3. Is B admissible for the causal effect of A on E ?
4. Is $\{B, D\}$ admissible for the causal effect of A on E ?
5. Is C admissible for the causal effect of A on E ?
6. Is $\{B, C\}$ admissible for the causal effect of E on A ?

Exercise 2a - Admissible sets

A set of nodes \mathbf{S} is admissible for adjustment for the causal effect of X on Y, if:

- $X, Y \notin \mathbf{S}$
- no element of \mathbf{S} is a descendant of X
- \mathbf{S} blocks all back-door paths $X \leftarrow$.. Y (all paths between X and Y that start with an incoming arc on X)

1. Is B admissible for adjustment to find the causal effect of D on E ? Yes.
2. Is $\}$ admissible for the causal effect of A on E ? Yes.
3. Is B admissible for the causal effect of A on E ? Yes.
4. Is $\{B, D\}$ admissible for the causal effect of A on E ? Yes.
5. Is C admissible for the causal effect of A on E ? No.
6. Is $\{B, C\}$ admissible for the causal effect of E on A ? Yes.

Exercise 2b - Kidney stones revisited

	Treatment A	Treatment B
Small stones	$81 / 87(\mathbf{9 3 \%})$	$234 / 270(87 \%)$
Large stones	$192 / 263(\mathbf{7 3 \%})$	$55 / 80(69 \%$
	$273 / 350(78 \%)$	$289 / 350(83 \%)$
Total	$562 / 700(80 \%)$	

$$
\begin{aligned}
& p(Y=y \mid d o(X=x)) \\
& \quad=\sum_{P a(X)} p(y \mid x, P a(X)) p(P a(X))
\end{aligned}
$$

causal graph for kidney stone trial

1. Confirm that Stone size is a valid and necessary adjustment variable for the causal effect of Treatment A / B on Recovery.
2. Match the variables and values in the table above to the adjustment formula. In particular: what values need to be summed over?
3. Compute the causal effect of choosing Treatment A on Recovery.
4. Idem for the causal effect of Treatment B, and compare. What is the expected improvement (ACE) of choosing the optimal treatment?

Exercise 2b - Kidney stones revisited

	Treatment A	Treatment B
Small stones	$81 / 87(\mathbf{9 3 \%})$	$234 / 270(87 \%)$
Large stones	$192 / 263(\mathbf{7 3 \%})$	$55 / 80(69 \%$
	$273 / 350(78 \%)$	$289 / 350(83 \%)$
Total	$562 / 700(80 \%)$	

$$
\begin{aligned}
& p(Y=y \mid d o(X=x)) \\
& \quad=\sum_{P a(X)} p(y \mid x, P a(X)) p(P a(X))
\end{aligned}
$$

causal graph for kidney stone trial

Causal effect via adjustment

$$
\begin{aligned}
& p(\text { Recovery } \mid \hat{A})=\sum_{s \in\{\text { small large }\}} p(R \mid T=A, \text { Size }=S) p(S)=0.93 * 0.51+0.73 * 0.49=0.832 \\
& p(\text { Recovery } \mid \hat{B})=\sum_{s \in\{\text { small,large }\}} p(R \mid T=B, \text { Size }=S) p(S)=0.87 * 0.51+0.69 * 0.49=0.782
\end{aligned}
$$

Outline

(1) Introduction to causality
(2) Prediction vs. causation
(3) Causal graphs and how to read them
(4) Cause-effect estimation
(5) The missing link \& conclusion

Another experiment: preventing eclampsia

	Treatment A	Treatment B
Low blood pressure	$81 / 87(\mathbf{9 3 \%})$	$234 / 270(87 \%)$
High blood pressure	$192 / 263(\mathbf{7 3 \%})$	$55 / 80(69 \%$
	$273 / 250(78 \%)$	$289 / 250(83 \%)$
Total recoveries	$562 / 700(80 \%)$	

- different labels, exact same numbers ... same conclusion?

Another experiment: preventing eclampsia

	Treatment A	Treatment B
Low blood pressure	$81 / 87(\mathbf{9 3 \%})$	$234 / 270(87 \%)$
High blood pressure	$192 / 263(\mathbf{7 3 \%})$	$55 / 80(69 \%$
	$273 / 250(78 \%)$	$289 / 250(\mathbf{8 3 \%})$
Total recoveries	$562 / 700(80 \%)$	

- different labels, exact same numbers ... same conclusion?

Conclusion

\Rightarrow we need to know the true underlying causal graph to compute causal effects!

Take home messages so far ...

- causality is a very useful concept
- if we want to tap into its potential we can and should use methods that treat it in a principled manner (we aim for validity, not truth)
- key feature is distinguishing between association and causation
- not always easy, but often doable

Take home messages so far ...

- causality is a very useful concept
- if we want to tap into its potential we can and should use methods that treat it in a principled manner (we aim for validity, not truth)
- key feature is distinguishing between association and causation
- not always easy, but often doable
- graphical causal models offer an intuitive way to model causal structure
- we can link structure to data via structural equations / causal BNs
- if we know the causal model we can use e.g. the back-door criterion and adjustment to compute/predict post-interventional distributions
- leading to quantities of interest such as the Average Causal Effect

But much more to follow in the next two days!

Take home messages so far ...

- causality is a very useful concept
- if we want to tap into its potential we can and should use methods that treat it in a principled manner (we aim for validity, not truth)
- key feature is distinguishing between association and causation
- not always easy, but often doable
- graphical causal models offer an intuitive way to model causal structure
- we can link structure to data via structural equations / causal BNs
- if we know the causal model we can use e.g. the back-door criterion and adjustment to compute/predict post-interventional distributions
- leading to quantities of interest such as the Average Causal Effect

But much more to follow in the next two days!

Thank you!

