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Many important research questions are rooted in causality
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Many important research questions are rooted in causality

e Answers typically involve ‘what causes it?’” and ‘how?’
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"does human activity cause climate change?”



Many important research questions are rooted in causality

e ‘Finding a connection’ does not imply we know what causes what ...

“"how are violent video games, ADHD, and aggression related?”



Many important research questions are rooted in causality

e Sometimes the difference between ‘connection’ and ‘causality’ is blurred ...
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“can we infer functional brain connectivity from fMRI data?”



Many important research questions are rooted in causality

e Sometimes it is not even clear if the concept ‘cause’ makes sense

“"can butterflies cause hurricanes?”



Causality: what is it?

How do we recognize causality?
(apparently so simple we don't teach this

at school/university)
“Of course I know cause and effect!”




Causality: what is it?

How do we recognize causality?
(apparently so simple we don't teach this

at school/university)
“Of course I know cause and effect ...”

What exactly do we mean by ‘cause’ and ‘effect’?
Intuitively obvious, yet curiously hard to define. Often involves aspects of

things that occur together

things that follow each other in time

things that are somehow necessary and/or sufficient to lead to another
things that change the probability of something else happening

things connected by a mechanistic chain of events, etc. etc.

Most definitions run into trouble somewhere ...
=) Main ‘cause’ behind a huge amount of philosophical controversy!



Hume on causality

The subject of causality has a long history in philosophy. For example
this is what Hume had to say about it:

“Thus we remember to have seen that species cf
object we caﬂﬂzme, and to have fe['t th/oft gpecies
of] sensation we call fear We likewise call to
mind their constant cor}junction in all past
instances. Without an fartﬁer ceremonyy, we
call the one cause and the other ﬁﬂ; and infer
the existence of the one f'rom that cf the other.”

David Hume, Treatise of Human Nature (1739)




Russell on causality

Some philosophers even proposed to abandon the concept of causality
altogether

“All phalosophers, of every school, imagine that
causation is one of the fundamental axioms or
postulates of science, yet, oddly enough, in advanced
sciences such as gravitational astronomy, the word
‘cause' never occurs. ‘I he law of causality, I believe,
like much that passes muster among philosophers, 1s
a relic of a bygone age, surviving, like the monarchy,
only because 1t 1s erroneously supposed to do no
harm”.

Bertrand Russell, On the Notion of Cause (1913)




Causality in statistics

Karl Pearson (one of the founders of modern statistics, well-known
from his work on the correlation coefficient) writes:

“Beyond such discarded fundamentals as “matter' and
“force' les still another fetish amudst the inscrutable
arcana of even modern science, namely, the category

of cause and effect.”

Karl Pearson, The Grammar of Science (1892)



Causality in statistics

Karl Pearson (one of the founders of modern statistics, well-known
from his work on the correlation coefficient) writes:

“Beyond such discarded fundamentals as “matter' and
“force' les still another fetish amudst the inscrutable
arcana of even modern science, namely, the category

of cause and effect.”

Karl Pearson, The Grammar of Science (1892)

Since then, many statisticians tried to avoid causal reasoning:
“Considerations of causality should be treated as they have always been in

statistics: preferably not at all.” (Terry Speed, former president of the Biometric

Society).
“It would be very healthy if more researchers abandon thinking of and using

terms such as cause and effect.” (Prominent social scientist).



Pragmatic approach

Causality = ‘Effective manipulability’

focus on relevant, measurable influence

understand why things happen

predict how things change if we intervene (effect computation)

not about truth, but about validity (given assumptions)

allows principled use of maths, statistics & logic on data and models
verify by experiment (‘Randomized Controlled Trial")




Effective manipulability
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Example - Gene regulation

transcript T,

protein A

protein B

central dogma of
molecular biology



Example - Gene regulation
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transcript T,

protein A
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microarray to measure
transcription levels



Observed gene expression levels
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Predicting gene expression levels
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Predicting gene expression levels
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Observation vs. intervention: gene knock-out experiments

|
m 071 )
— | o o8 %
C TN | o Q %é
O l coe %o ¥ Bk ©
- — o) o o R & ©
= %ﬁg 8o, B BB, Fo
o A | ©0g S © g® &o
—— > &P Fop o ®° 8
(- | 0% F o @20 o oopo °
O o g’ L& @ o§
(7)) 041 ooo%%% o °® & o o
C I ° o 0
S o
> I (g
| [goo
ozl
o
& .
R
: pl|\T,|do(T, =0.0
B A
T B -

transcription T,



Observation vs. intervention: gene knock-out experiments
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What if we do not know the model?

@
(o]
ol ($)° “‘—’%,—\_,?\— ré\cq—bé
o ° o0 vou i .
:é% Do you think all these film crews
o % brought on global warming or did global
warming bring on all these film crews?"

Q: Does X cause Y or does Y cause X? ... or “can't tell”?



Causal direction from model simplicity

X Y
Easy to explain as Difficult to explain as
Y = f(X) + noise X = f(Y) + noise

O—=



Chocolate consumption and Nobel prizes ...
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Messerli, F. H., et al. "Chocolate Consumption, Cognitive Function, and Nobel Laureates." N Engl J Med 367.16 (2012): 1562-4.



Chocolate consumption and Nobel prizes ...
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the sprouting of Nobel laureates. Obviously,

these findings are hypothesis-generating only

and will have to be tested in a prospective, ran- £} United Kingdom
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Messerli, F. H., et al. "Chocolate Consumption, Cognitive Function, and Nobel Laureates.” N Engl J Med 367.16 (2012): 1562-4.



Chocolate consumption and Nobel prizes ...
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BRITISH MEDICAL JOURNAL
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SMOKING AND CARCINOMA OF THE LUNG
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Treatment of kidney stones

Treatment A Treatment B

Recoveries

273/350 (78%) 289/350 (83%)

Total

562/700 (80%)

Treatment A/B

Question: What treatment would you prefer?

Charig, Clive R., et al. "Comparison of treatment of renal calculi by open surgery, percutaneous nephrolithotomy,
and extracorporeal shockwave lithotripsy." Br Med J (Clin Res Ed) 292.6524 (1986): 879-882.



Treatment of kidney stones

Treatment A Treatment B
Small stones 81/87 (93%) 234/270 (87%)
Large stones 192/263 (73%) 55/80 (69%
Recoveries 273/350 (78%) 289/350 (83%)
Total 562/700 (80%)

Treatment A/B

Question: What treatment would you prefer now?



Treatment of kidney stones

Treatment A Treatment B

"Simpson'’s
paradox”

Small stones 81/87 (93%) 234/270 (87%)
Large stones 192/263 (73%) 55/80 (69%
Recoveries 273/350 (78%) 289/350 (83%)
Total 562/700 (80%)

Treatment A/B

Question: What treatment would you prefer now?




Treatment of kidney stones

Treatment A Treatment B

Small stones 81/87 (93%) 234/270 (87%)
Large stones 192/263 (73%) 55/80 (69%
Recoveries 273/350 (78%) 289/350 (83%)
Total 562/700 (80%)

Treatment A/B

Recovery



Treatment of kidney stones

Treatment A Treatment B
Small stones 81/87 (93%) 234/270 (87%)
Large stones 192/263 (73%) 55/80 (69%
Recoveries 273/350 (78%) 289/350 (83%)
Total 562/700 (80%)

Treatment A/B

Question: How to compute the actual effect?

Recovery



Computing causal effect sizes from observations

e split observed correlation in causal effect and confounding

Pxy

observed correlation combination of (possible) causal
effect and (possible) confounding



Computing causal effect sizes from observations

split observed correlation in causal effect and confounding

Pxy

combination of (possible) causal

observed correlation _ ‘
effect and (possible) confounding

How to compute the causal effect?

gold standard: randomized controlled trial!

otherwise

adjustment formula to compensate for confounding (later this session)
more general: do-calculus [Pearl, Causality 2009]
not always possible!
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Key model assumption: causal DAG

e real world consists of networks of causally interacting variables,
e structure corresponds to a directed acyclic graph (DAG)
e arcs represent direct causes between variables in the system

causal DAG G
(Directed Acyclic Graph)



Key model assumption: causal DAG

e real world consists of networks of causally interacting variables,
e structure corresponds to a directed acyclic graph (DAG)

e arcs represent direct causes between variables in the system

e subset of these variables observed in experiments
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(Directed Acyclic Graph)



Key model assumption: causal DAG

e real world consists of networks of causally interacting variables,
e structure corresponds to a directed acyclic graph (DAG)

e arcs represent direct causes between variables in the system

e subset of these variables observed in experiments
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underlying causal DAG G equivalent ADMG representation
(Directed Acyclic Graph) (Acyclic Directed Mixed Graph)



Basic graphical model terminology

e nodes and edges

bi-directed
vertex/node — edge

7
©




e path - sequence of (distinct) nodes = = (Xi,X5,..,X,?> where each successive
pair of nodes along the path is adjacent (connected by an edge) in graph G

A-B-E




Collider and non-collider triples

e collider - triple of successive nodes (X,Y,Z) along a path, where the

edges from X and Z have an arrowhead (‘collide’) atY, e.g. X <> Y < Z
e non-collider - any such triple that is not a collider, e.g. X > Y — Z,
X<—Y<«—Z orX«<¥Y—>2Z

A-B-E




Collider and non-collider triples

e collider - triple of successive nodes (X,Y,Z) along a path, where the

edges from X and Z have an arrowhead (‘collide’) atY, e.g. X <> Y < Z
e non-collider - any such triple that is not a collider, e.g. X > Y — Z,
X<—Y<«—Z orX«<¥Y—>2Z

collider



Ancestral relations

e ifX > Yisingraph G, then X is a parent of Y, and Y is a child of X

e ifX < Yisingraph G, then X is a spouse of Y (and v.v.)

e if there is a directed path X - .. > Y in G, then X is ancestor of Y, and Y
is @ descendant of X

spouses

parent \ ; \
child ancestor
descendant

!



Blocked and unblocked paths

e apathrz =(X,..,Y) is unblocked given set of nodes Z iff:
— all non-colliders along = are not in Z
— all colliders along = are in Z or are ancestor of some Z € Z

otherwise the path is blocked

Path (A,B,F,G) is unblocked given the empty set ...



Blocked and unblocked paths

e apathrz =(X,..,Y) is unblocked given set of nodes Z iff:
— all non-colliders along = are not in Z
— all colliders along = are in Z or are ancestor of some Z € Z

otherwise the path is blocked

non-collider

... path (A,B,F,G) is blocked given F ...



Blocked and unblocked paths

e apathrz =(X,..,Y) is unblocked given set of nodes Z iff:
— all non-colliders along = are not in Z
— all colliders along = are in Z or are ancestor of some Z € Z

otherwise the path is blocked

... but path (A,B,D,G) becomes unblocked given F ...



Blocked and unblocked paths

e apathrz =(X,..,Y) is unblocked given set of nodes Z iff:
— all non-colliders along = are not in Z
— all colliders along = are in Z or are ancestor of some Z € Z

otherwise the path is blocked

non-collider

... and path (A,B,D,G) is again blocked given {D,F}.



e in agraph G, nodes X and Y are d-separated given Z, iff

there are no unblocked paths in G between X and Y given Z,

otherwise they are d-connected

i ;J\

Judea Pearl
(Winner Turing Award 2012)




e in agraph G, nodes X and Y are d-separated given Z, iff

there are no unblocked paths in G between X and Y given Z,

otherwise they are d-connected

i ;d\

Judea Pearl
(Winner Turing Award 2012)

Nodes A and G are d-separated given {D,F},
but d-connected given {}, D, or F.



Exercise 1a — Paths and colliders

e collider - triple of successive nodes (X,Y,Z) along a path, where the
edges from X and Z have an arrowhead (‘collide’) atY, e.g. X <> Y < Z

Is (A,C,B,A) a path?

Is (A,C,E.D,B) a (directed) path?

Is A an ancestor of D?

What are descendants of B?

Which nodes on the path (B,D,E,C,A) are non-colliders?

A v-structure is a collider between non-adjacent nodes. How many v-
structures are in the graph G?

ok wnN =



Exercise 1a — Paths and colliders

e collider - triple of successive nodes (X,Y,Z) along a path, where the
edges from X and Z have an arrowhead (‘collide’) atY, e.g. X <> Y < Z

Is (A,C,B,A) a path? No: A and B are not adjacent and A occurs twice.

Is (A,C,E.D,B) a (directed) path? It is a path, but not a directed path.

Is A an ancestor of D? No: there is no directed path from A to D.

What are descendants of B? Nodes {B,C,D} (B is also its own descendant!)
Which nodes on the path (B,D,E,C,A) are non-colliders? Nodes C and D.

A v-structure is a collider between non-adjacent nodes. How many v-
structures are in the graph G? Two: A - C < B, and C - E « D.

ok wnN =



Exercise 1b — Blocked and unblocked paths

e apathrz =(X,..,Y) is unblocked given set of nodes Z iff:
— all non-colliders along = are not in Z
— all colliders along = are in Z or are ancestor of some Z € Z

otherwise the path is blocked

Is C & B — D blocked by ( given’) B?

Is A - C < B blocked given E?

IsA—- C — E « D blocked? (given empty set Z = {})

Is path (A,C,B,D) blocked by {C,E}?

Which set(s) of nodes (if any) unblock a path from A to B?

Claim: ‘A path between two nodes can be blocked, iff they are non-
adjacent’. True or false?

oS N



Exercise 1b — Blocked and unblocked paths

e apathrz =(X,..,Y) is unblocked given set of nodes Z iff:
— all non-colliders along = are not in Z
— all colliders along = are in Z or are ancestor of some Z € Z

otherwise the path is blocked

Is C & B — D blocked by (" given’) B? Yes.

Is A - C < B blocked given E? No.

Is A —- C —> E « D blocked? (given empty set Z = {}) Yes.

Is path (A,C,B,D) blocked by {C,E}? No.

Which set(s) of nodes (if any) unblock a path from A to B? Any subset of
{C,D,E} containing at least one node from {C,E}.

Claim: ‘A path between two nodes can be blocked, iff they are non-
adjacent’. True or false? False: reverse counter example (B,D,E,C).

L h N

o



Exercise 1c — d-separation

e in agraph G, nodes X and Y are d-separated given Z, iff

there are no unblocked paths in G between X and Y given Z,

otherwise they are d-connected

Are A and B d-separated? (given empty set {})

Are C and D d-separated by B?

Are A and E d-separated by C?

Are A and D d-separated by {B,E}?

Which set(s) of nodes (if any) would d-separate B and E?

True or false: ‘Two nodes can be d-separated, iff they are non-adjacent’?

o s WwN e



Exercise 1c — d-separation

o s WwN e

in @ graph G, nodes X and Y are d-separated given Z, iff

there are no unblocked paths in G between X and Y given Z,

otherwise they are d-connected

Are A and B d-separated? (given empty set {}) Yes.

Are C and D d-separated by B? Yes.

Are A and E d-separated by C? No: path (A,C,B,D,E) is unblocked by C.
Are A and D d-separated by {B,E}? No: (A,C,E,D) remains unblocked.
Which set(s) of nodes (if any) would d-separate B and E? {C,D},{A,C,D}
True or false: ‘Two nodes can be d-separated, iff they are non-adjacent’?
True for DAGs, but not for ADMGs in general!



Linking graphs to data

- graphical models offer an intuitive means to model causal interactions
« so far we only considered the causal structure ...

« ... now we need to link the graphs to data

= enter the Causal Bayesian Network!

OWSOS,
©

D)

causal DAG G



Bayesian network

A Bayesian Network (BN) is a pair (G, p), where
e G is a directed acyclic graph over variables X = {X,, X,, .. , Xk}

e pis a joint probability distribution over X that factorizes according to G

D 6 p(X)= QP(X pa(X,))
G

D)

parents of X, in G

causal DAG G factorized joint probability distribution



Bayesian network

A Bayesian Network (BN) is a pair (G, p), where
e G is a directed acyclic graph over variables X = {X,, X,, .. , Xk}

e pis a joint probability distribution over X that factorizes according to G
K
plX)= p(X ‘pa X )
OO (X)=]1r(x:[pa(x;)
C
(D

p(A,B,C,D)=
p(A)p(B)p(C|A.B)p(D|B.C)

causal DAG G factorized joint probability distribution



Causal Bayesian network

A Bayesian Network (G, p) is causal if

e all and only the directed edges in G correspond to direct causal relations,
e it satisfies the Causal Markov condition:

“In a causal DAG G, every node is probabilistically independent of its non-
descendants given its parents (direct causes) in G.”

causal DAG G



Causal Bayesian network

A Bayesian Network (G, p) is causal if

e all and only the directed edges in G correspond to direct causal relations,
e it satisfies the Causal Markov condition:

“In a causal DAG G, every node is probabilistically independent of its non-

descendants given its parents (direct causes) in G.”

As a result

- d-separation = probabilistic independence
causal DAG G



Structural Causal Model

e each child-parent family in the causal DAG G corresponds to a deterministic

X =/, (pa(Xi)’gi)
with g; representing all exogenous influences (noise) on X;
e collection is a Structural Causal/Equation Model (SCM/SEM)

function

/"\\
Enl 'ER!
\\A \\B,

causal DAG G corresponding Structural Causal Model



Structural Causal Model

e each child-parent family in the causal DAG G corresponds to a deterministic

function
X =/, (pa(Xi)’gi)
with g; representing all exogenous influences (noise) on X;
e collection is a Structural Causal/Equation Model (SCM/SEM)

A=¢, e, ~N(0,0,)
B=¢,
C=0aA+pB+e,

D=yB+0D+¢,

causal DAG G Example: multivariate Gaussian model
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Interventions

e intervening = actively changing the world

not this one ... but this one



Interventions

intervening = actively changing the world

Examples

prescribing a treatment (or placebo) in an RCT
gene knock-out experiment

deciding to quit smoking

governments changing laws / taxation levels,
lowering home room temperatures

adding a catalyst to a chemical reaction, etc.



Interventions

e intervening = actively changing the world

Examples

e prescribing a treatment (or placebo) in an RCT
e gene knock-out experiment

e deciding to quit smoking

e governments changing laws / taxation levels,
e |lowering home room temperatures

e adding a catalyst to a chemical reaction, etc.

Common types of interventions

e hard/soft - (directly forcing a variable to a specific value vs. indirectly
stimulating a variable to e.g. higher/lower values)

e surgical/fat-hand - (very precisely affecting only the target intervention
variable vs. having possible unintended side-effects)

e perfect interventions = hard+surgical (Pearl’s do-operator, see next)

e mechanism interventions (acting on the functional form of the relations)



Intervention in a Structural Causal Model

Perfect intervention in SCM

externally force a node to a specific value: do(X; = x;)
replace structural equation fi(..) with constant x;

corresponds to removing all incoming arcs to X; in causal DAG G

® @
©

D)

causal DAG G with
intervention on C

A=fA<gA)

B =fB (53)
C=c
D=f,(B,C.¢,)

intervention do(C = ¢)



Computing what happens after an intervention

We can understand / predict the effect of an intervention if we can rewrite the
(unknown) interventional distribution in terms of the known observed

distribution.
p(A,B,C,D)=
p(A)p(B)p(C|A.B)p(D|B.C)
@ ¢ @ original observed joint probability distribution
©
© p(A,B,C,D|do(C=c))=...?

interventional distribution under do(C = c)

causal DAG G with
intervention on C



Computing the causal effect: adjustment

« The difference between the expectation under pre- and post-interventional
distribution then corresponds to the causal effect
« Difficult to compute in general : Pearl’s do-calculus

©
D)

causal DAG G with
intervention on C



Computing the causal effect: adjustment

« The difference between the expectation under pre- and post-interventional
distribution then corresponds to the causal effect
« Difficult to compute in general : Pearl’s do-calculus

« Fortunately, for a large class of problems there exists a relatively
straightforward procedure: ‘adjusting for the parents’

@ ¢ (B) p(Y=y‘d0(X=x))
(C =P%)p(yx,Pa(X))p(Pa(X))

D)

adjustment formula for intervention on X

causal DAG G with
intervention on C



Back-door criterion

e we can generalize adjustment to ‘admissible’ sets (instead of just parents)

Theorem: A set of nodes S is admissible for adjustment to find the causal

effect of X on Y, if:

c X,Ye S

 no element of S is a descendant of X

« S blocks all back-door paths X <— .. Y (all paths between X and Y that start
with an incoming arc on X)

©
D)

B is admissible for computing
the causal effect of C (or A) on D



Back-door criterion

e we can generalize adjustment to ‘admissible’ sets (instead of just parents)

Theorem: A set of nodes S is admissible for adjustment to find the causal

effect of X on Y, if:

c X,Ye S

 no element of S is a descendant of X

« S blocks all back-door paths X <— .. Y (all paths between X and Y that start
with an incoming arc on X)

G p(Y=y‘d0(X=x))=Ep(y|x,S=s)p(S=s)
© ( =JP(les)p(s)ds )

B is admissible for computing

general adjustment formula
the causal effect of C (or A) on D



Average Causal Effect (ACE)

if we can predict what happens on an intervention we can consider
quantifying the causal impact of one variable on another

the Average Causal Effect (ACE) quantifies the causal effect of X on Y as
the difference in expectation of Y under different interventions on X

ACE(X —Y)=E|Y|do(X =1)|- E|Y|do(X =0)

=7 p(¥|do(X =1))- 37 - p(¥ |do(X =0))

ACE for causal effect of binary variable X
on ordinal variable Y




Exercise 2a — Admissible sets

A set of nodes S is admissible for adjustment for the causal effect of X on Y, if:

e« X,Ye8S

 no element of S is a descendant of X

« S blocks all back-door paths X <— .. Y (all paths between X and Y that start
with an incoming arc on X)

graph G

Is B admissible for adjustment to find the causal effect of D on E?
Is {} admissible for the causal effect of A on E?

Is B admissible for the causal effect of A on E?

Is {B,D} admissible for the causal effect of A on E?

Is C admissible for the causal effect of A on E?

Is {B,C} admissible for the causal effect of E on A?

ok wnN =



Exercise 2a — Admissible sets

A set of nodes S is admissible for adjustment for the causal effect of X on Y, if:

c X,Ye S

 no element of S is a descendant of X

« S blocks all back-door paths X <— .. Y (all paths between X and Y that start
with an incoming arc on X)

Is B admissible for adjustment to find the causal effect of D on E? Yes.
Is {} admissible for the causal effect of A on E? Yes.

Is B admissible for the causal effect of A on E? Yes.

Is {B,D} admissible for the causal effect of A on E? Yes.

Is C admissible for the causal effect of A on E? No.

Is {B,C} admissible for the causal effect of E on A? Yes.

ok wnN =



Exercise 2b — Kidney stones revisited

Treatment A Treatment B
Small stones 81/87 (93%) 234/270 (87%)
Large stones 192/263 (73%) 55/80 (69%
273/350 (78%) 289/350 (83%) +
Total 562/700 (80%) B

Treatment A/B

X, Pa (X)) P (Pa (X)) causal graph for kidney stone trial

p(Y = y‘do(X = x))

-2 rly
Pa(X)

adjustment formula for intervention on X

1. Confirm that Stone size is a valid and necessary adjustment variable for
the causal effect of Treatment A/B on Recovery.

2. Match the variables and values in the table above to the adjustment
formula. In particular: what values need to be summed over?

3. Compute the causal effect of choosing Treatment A on Recovery.

4. Idem for the causal effect of Treatment B, and compare. What is the
expected improvement (ACE) of choosing the optimal treatment?



Exercise 2b — Kidney stones revisited

Treatment A

Treatment B

Small stones

Large stones

81/87 (93%)

192/263 (73%)

234/270 (87%)

55/80 (69%

273/350 (78%)

289/350 (83%) +

Total

562/700 (80%)

p(Y = y‘do(X = x))

-2 rly
Pa(X)

x,Pa(X)) p(Pa(X))

Treatment A/B

causal graph for kidney stone trial

adjustment formula for intervention on X

Causal effect via adjustment

P

Recovery

Recovery

A

A

A

B

S E{small s large}

2

S E{small , large}

p(R

p(R

T = A,Size = S)p(S) =0.93%0.51+0.73%0.49 = 0.832

T = B,Size = S)p(S) =0.87%0.51+0.69%0.49 = 0.782
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Another experiment: preventing eclampsia

Treatment A Treatment B
Low blood pressure 81/87 (93%) 234/270 (87%)
High blood pressure | 192/263 (73%) 55/80 (69%
273/250 (78%) 289/250 (83%)
Total recoveries 562/700 (80%)

« different labels, exact same numbers ... same conclusion?



Another experiment: preventing eclampsia

Treatment A Treatment B
Low blood pressure 81/87 (93%) 234/270 (87%)
High blood pressure | 192/263 (73%) 55/80 (69%
273/250 (78%) 289/250 (83%)
Total recoveries 562/700 (80%)

« different labels, exact same numbers ... same conclusion?

Treatment A
| Blood Pressure

— we need to know the true underlying causal graph to compute causal effects!

total causal effect

Conclusion



Take home messages so far ...

e causality is a very useful concept

e if we want to tap into its potential we can and should use methods that
treat it in a principled manner (we aim for validity, not truth)

e key feature is distinguishing between association and causation

e not always easy, but often doable
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e causality is a very useful concept

e if we want to tap into its potential we can and should use methods that
treat it in a principled manner (we aim for validity, not truth)

e key feature is distinguishing between association and causation

e not always easy, but often doable

e graphical causal models offer an intuitive way to model causal structure

e we can link structure to data via structural equations / causal BNs

e if we know the causal model we can use e.g. the back-door criterion and
adjustment to compute/predict post-interventional distributions

e |leading to quantities of interest such as the Average Causal Effect

But much more to follow in the next two days!



Take home messages so far ...

e causality is a very useful concept

e if we want to tap into its potential we can and should use methods that
treat it in a principled manner (we aim for validity, not truth)

e key feature is distinguishing between association and causation

e not always easy, but often doable

e graphical causal models offer an intuitive way to model causal structure

e we can link structure to data via structural equations / causal BNs

e if we know the causal model we can use e.g. the back-door criterion and
adjustment to compute/predict post-interventional distributions

e |leading to quantities of interest such as the Average Causal Effect

But much more to follow in the next two days!

Thank you!



