

Estimating causal effects of policy interventions SIKS May 31st 2023 回旅回

Oisín Ryan With thanks to EJ van Kesteren

Context: "Policy Evaluations"

Evaluating what **the effect** of implementing a particular **policy** or **intervention** was on some outcome of interest

Examples:

- What was the effect of raising the maximum speed limit on motorways in the Netherlands on road deaths?

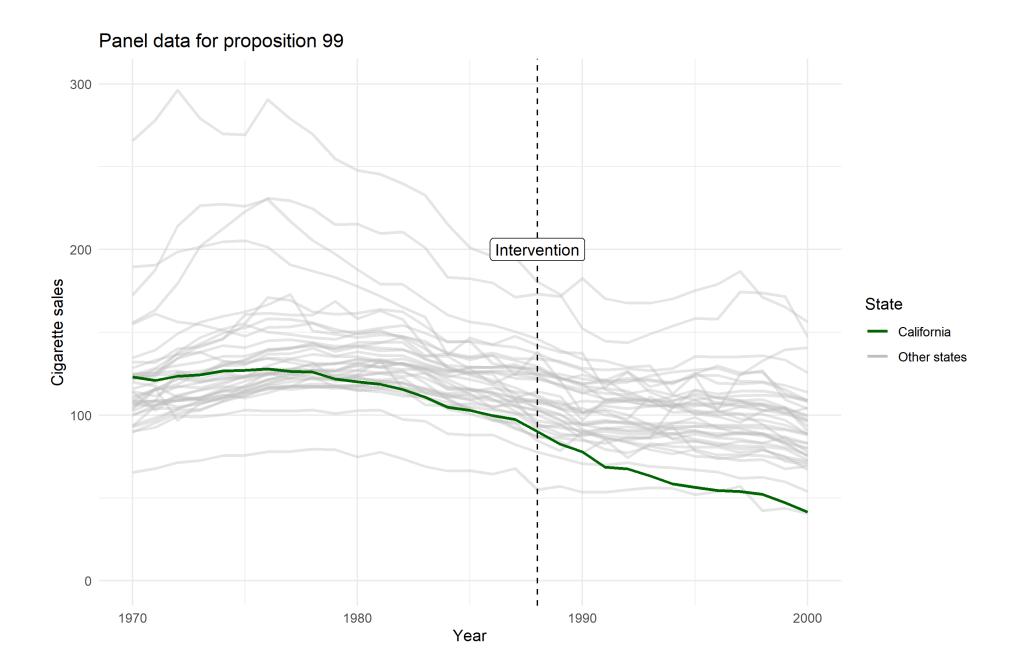
- Did introducing an after-school programme in disadvantaged neighbourhoods lead to improved educational outcomes in children from that neighbourhood?

Running Example: Proposition 99

• A famous example in policy evaluation literature

Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control methods for comparative case studies: **Estimating the effect of California's tobacco control program**. Journal of the American statistical Association, 105(490), 493-505.

- In 1988, the state of California imposed a 25% tax on tobacco cigarettes
- Did this intervention successfully reduce cigarette sales in California?



Causal Policy Evaluation

Basic Structure:

- We have one (or more) **unit(s)** which we observe **before** and **after** some intervention or action
- Did the intervention produce a change in the outcome for that unit?

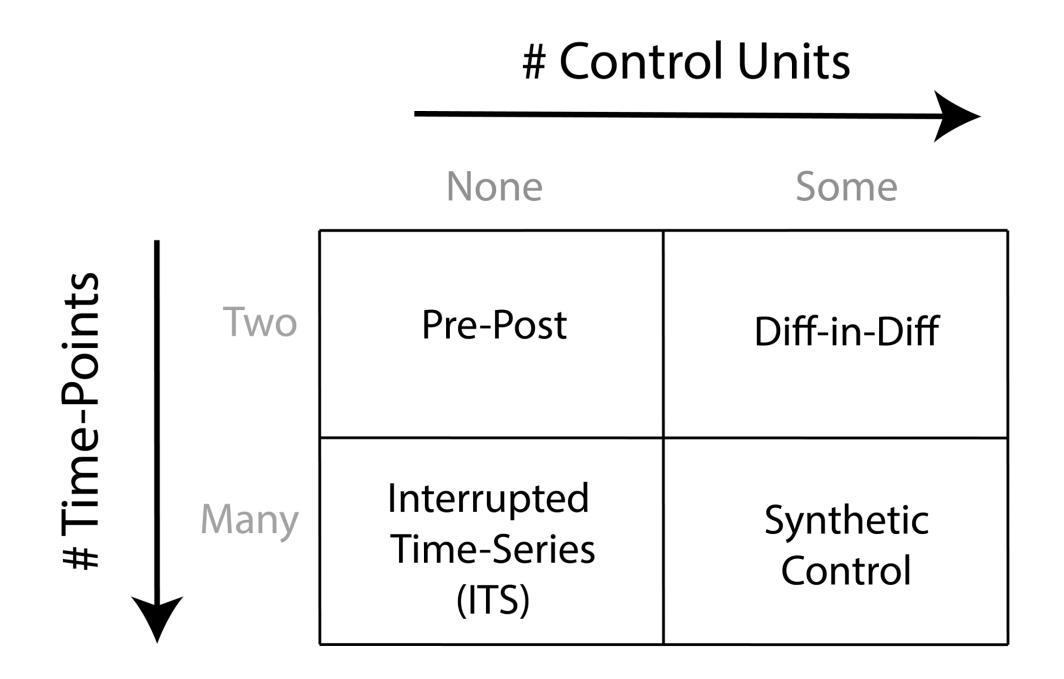
Causal Policy Evaluation

Basic Structure:

- We have one (or more) **unit(s)** which we observe **before** and **after** some intervention or action
- Did the intervention produce a change in the outcome for that unit?

Many different methods/approaches which differ in:

- The **amount** and **type** of information they use
 - Amount of time-points and amount of potential "control" units
- The specific **statistical approach** they take
- The types of **assumptions** they rely on for identification



This Lecture

Policy evaluation through the lens of potential outcomes

We will consider the case where:

- we have **one unit** observed **repeatedly over time**
- at some point in time (T_0) an **intervention** takes place

Pre-intervention we observe Y_t^0 and **post-intervention** Y_t^1

Time	Y_t	A_t
1	7	0
2	9	0
3	6	0
4	5	0
5	6	0
6	2	1
7	3	1
8	1	1
Т	2	1

Time	Y _t	A_t	Y_t^0	Y_t^1
1	7	0	7	NA
2	9	0	9	NA
3	6	0	6	NA
4	5	0	5	NA
5	6	0	6	NA
6	2	1	NA	2
7	3	1	NA	3
8	1	1	NA	1
Т	2	1	NA	2

Causal Effects of Policies

We want to estimate the **causal effect of the policy intervention**

We think about this as the difference between

(a) the **observed outcome** <u>after</u> the policy was introduced

(b) What the outcome **would have been** without the intervention

$$CE_t = Y_t^1 - Y_t^0$$

where $t > T_0$ (i.e., the post-intervention time period)

Time	Y _t	A_t	Y_t^0	Y_t^1
1	7	0	7	NA
2	9	0	9	NA
3	6	0	6	NA
4	5	0	5	NA
5	6	0	6	NA
6	2	1	NA	2
7	3	1	NA	3
8	1	1	NA	1
Т	2	1	NA	2

Time	Y_t	A_t	Y_t^0	Y_t^1
1	7	0	7	NA
2	9	0	9	NA
3	6	0	6	NA
4	5	0	5	NA
5	6	0	6	NA
6	2	1	NA	2
7	3	1	NA	3
8	1	1	NA	1
Т	2	1	NA	2

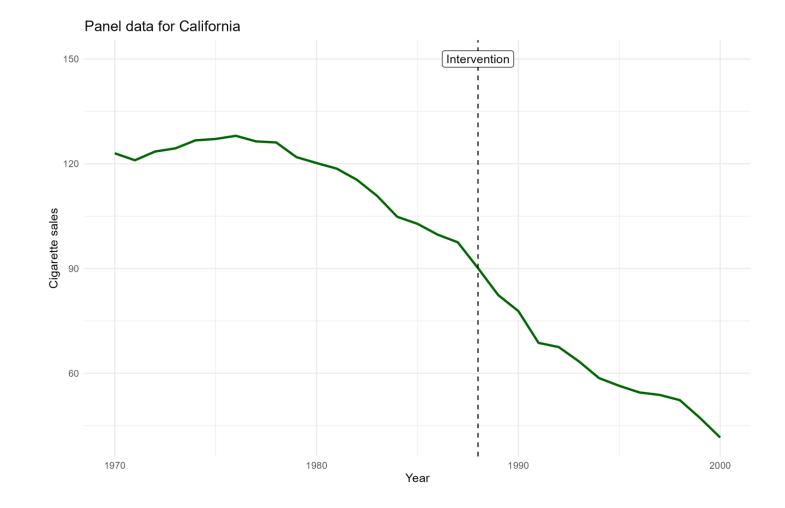
The problem of estimating the effect of a policy intervention is equivalent to the problem of estimating Y_t^0

Abadie, A. (2021). Using synthetic controls: Feasibility, data requirements, and methodological aspects. Journal of Economic Literature, 59(2), 391-425.

Pre-Post Estimator

Pre-post estimator

We use only the cigarette sales time series for California



Pre-post estimator

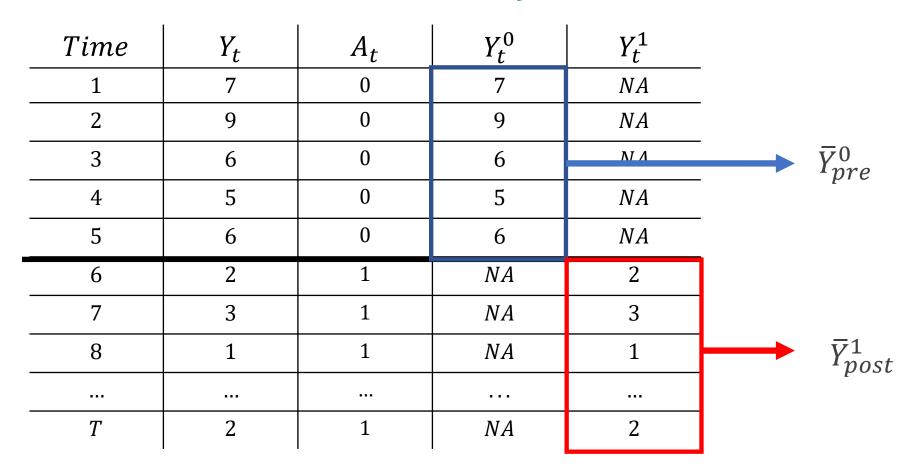
• We want to estimate the following quantity:

$$CE_{post} = E[Y_{post}^{1}] - E[Y_{post}^{0}]$$

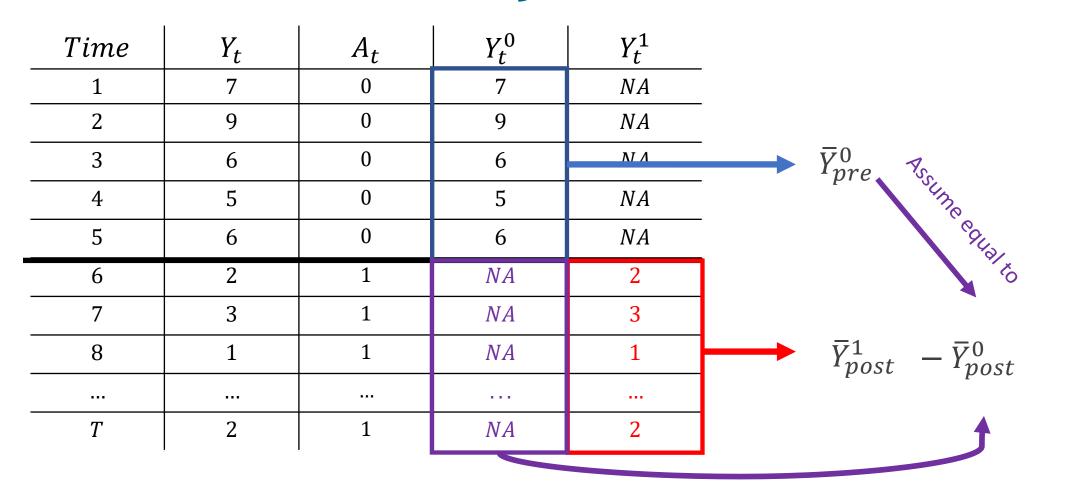
- But we cannot observe Y_{post}^0 !
- Solution(!): replace $E[Y_{post}^0]$ by $E[Y_{pre}^0]$, which is observable

$$CE_{post} = E[Y_{post}^1] - E[Y_{pre}^0]$$

Pre – Post analysis

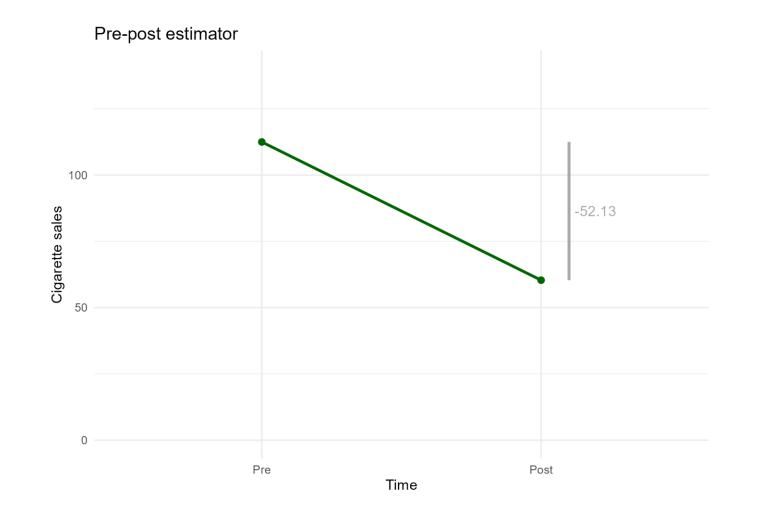


Pre – Post analysis



$$\widehat{CE}_{post} = \overline{Y}_{post}^1 - \overline{Y}_{post}^0$$

Pre-post estimator



Can estimate uncertainty by using a regression model on the disaggregated data, correcting SEs for unmodelled autocorrelation

Pre-post estimator

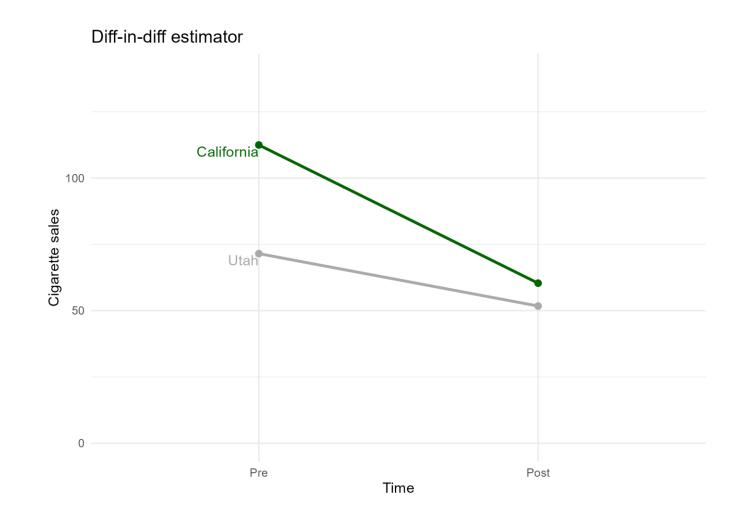
Most important / strict assumption: No trend in time

- Remember: we assumed $\bar{Y}_{post}^0 = \bar{Y}_{pre}^0$
- We assume the pre-post difference is caused by intervention <u>only</u>
- If trend exists, then the effect of trend and of intervention cannot be distinguished

"transparent and often at least superficially plausible"

Angrist, J. D. and Krueger, A. B. (1999). Empirical strategies in labor economics. In Handbook of labor economics, volume 3, pages 1277–1366. Elsevier.

Time	Y_t	A_t	Y_t^0	Y_t^1	C_{1t}
1	7	0	7	NA	2
2	9	0	9	NA	6
3	6	0	6	NA	4
4	5	0	5	NA	2
5	6	0	6	NA	1
6	2	1	NA	2	3
7	3	1	NA	3	2
8	1	1	NA	1	4
Т	2	1	NA	2	3



• Like before, we want to estimate the following quantity:

$$\overline{CE}_{post} = \overline{Y}_{post}^1 - \overline{Y}_{post}^0$$

- Now, we assume there is an effect of time: $\beta \cdot Time$
- We can represent unobservable \overline{Y}_{post}^0 as

$$\bar{Y}_{post}^0 = \bar{Y}_{pre}^0 + \beta \cdot Time$$

- But the trend $\beta \cdot Time$ is also unobservable!
- Solution: assume equal trends for Utah and California

$$\beta \cdot Time = (\bar{C}_{post}^0 - \bar{C}_{pre}^0)$$

• Thus, our model for the counterfactual is:

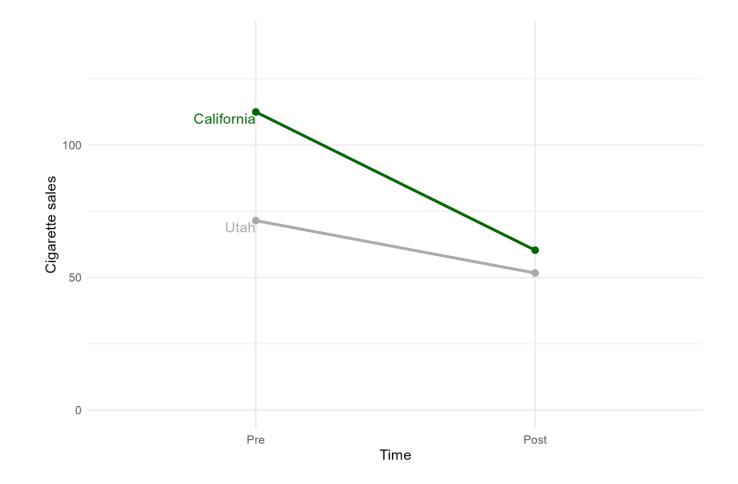
$$\bar{Y}_{post}^0 = \bar{Y}_{pre}^0 + (\bar{C}_{post}^0 - \bar{C}_{pre}^0)$$

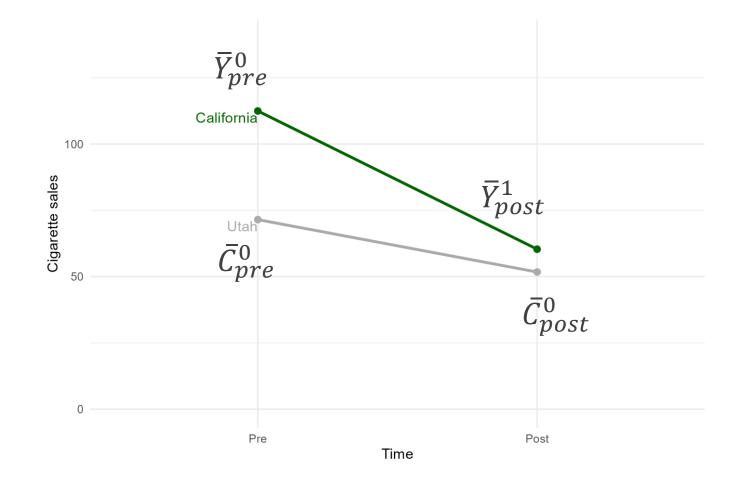
• Plugging this into the causal effect equation:

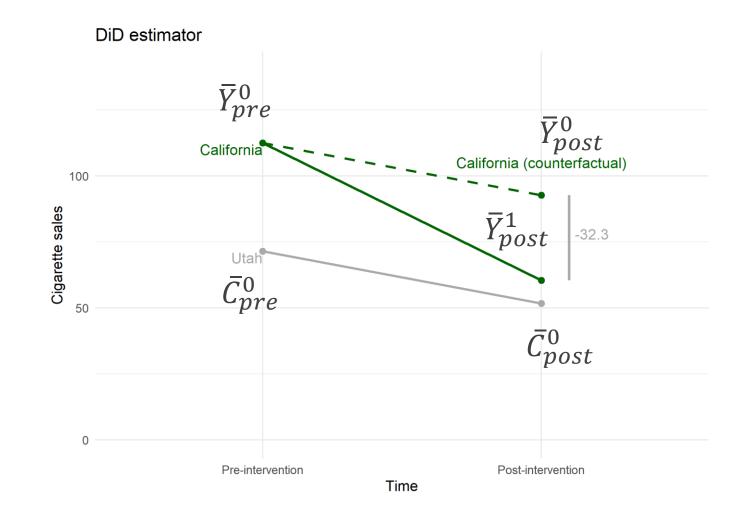
$$\overline{CE}_{post} = \left(\overline{Y}_{post}^{1} - \overline{Y}_{pre}^{0}\right) - \left(\overline{C}_{post}^{0} - \overline{C}_{pre}^{0}\right)$$

• Difference in differences!

$$\widehat{CE}_{post} = \left(\overline{Y}_{post} - \overline{Y}_{pre}\right) - \left(\overline{C}_{post} - \overline{C}_{pre}\right)$$







Most important assumptions

Parallel trends

 $\beta \cdot Time = (\bar{C}_{post}^0 - \bar{C}_{pre}^0)$

Time effect is the same for the treated and the control unit

No interference / spillover

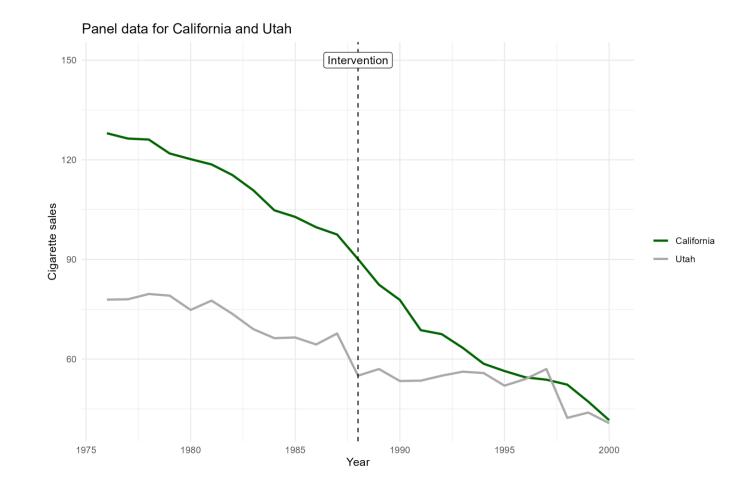
 $\bar{C}_{post} = \bar{C}_{post}^0$

The control unit is not affected by the intervention

Most important assumptions

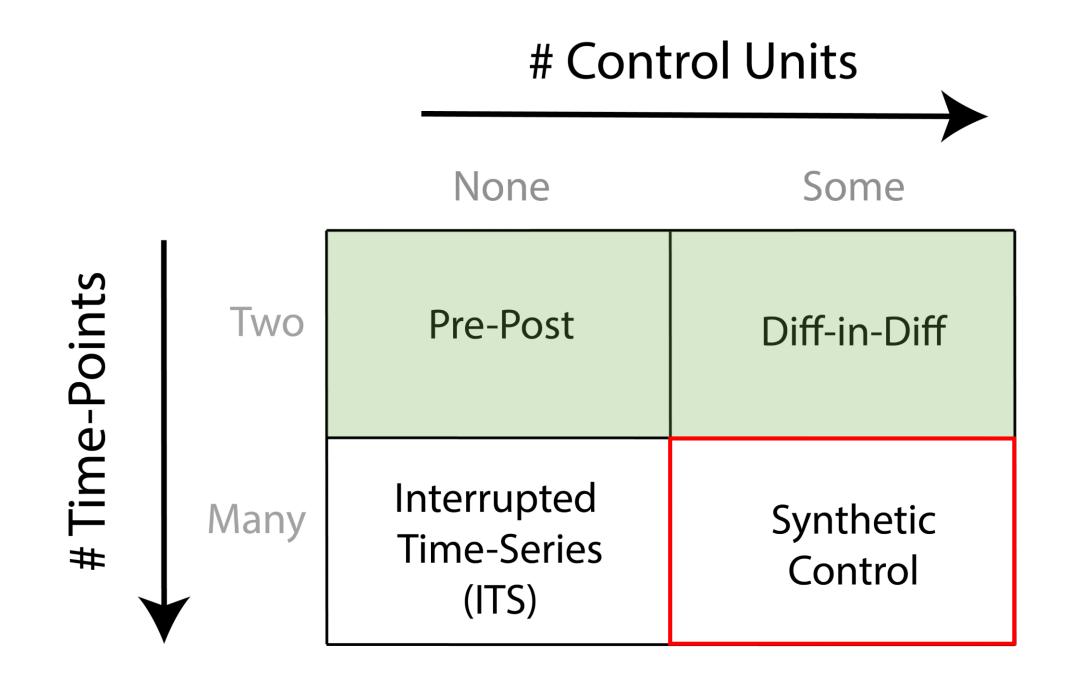
• Can we assume parallel trends?

• Superficially plausible?



Practical: pre-post & DiD

Work in pairs/groups! tinyurl.com/2s3hn8pj



Synthetic Control

"arguably the most important innovation in the policy evaluation literature in the last 15 years"

Athey, S., & Imbens, G. W. (2017). The state of applied econometrics: Causality and policy evaluation. Journal of Economic perspectives, 31(2), 3-32.

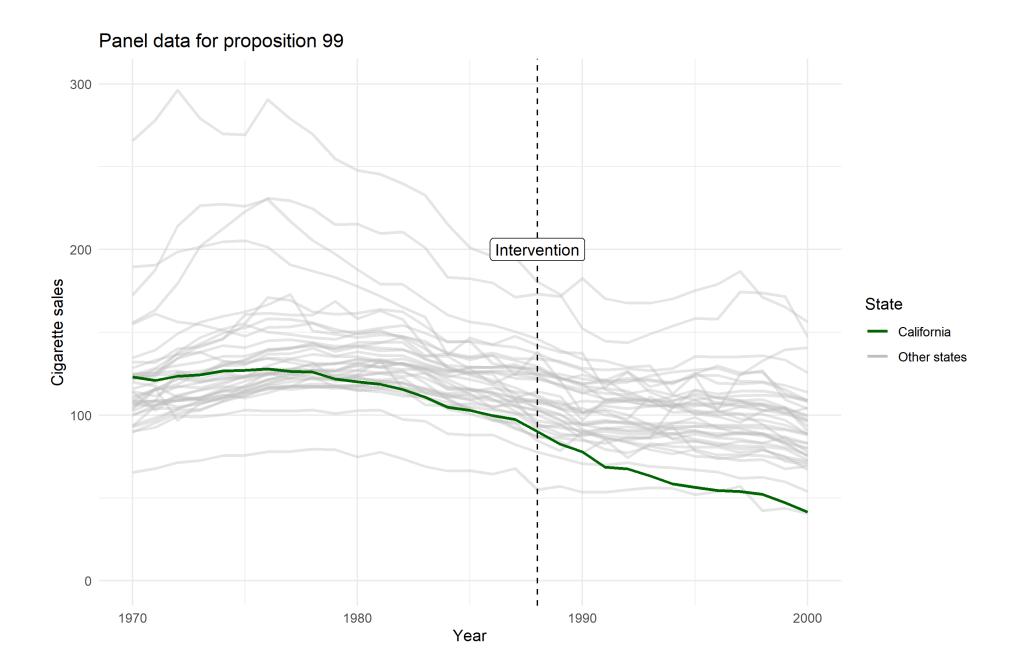
Basic idea

With diff-in-diff we used a control unit to attempt a correction for unmeasured time-varying confounders (e.g., macroeconomic situation in U.S.A.)

- You need a good control unit to make the parallel trends assumption at least superficially plausible
- But how much is Utah really like California?

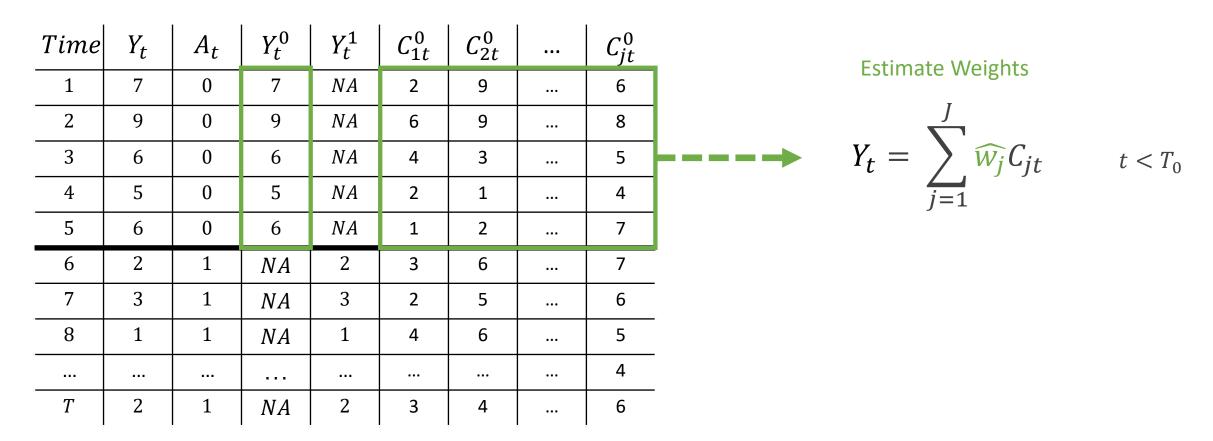
We can instead use a weighted average of a **donor pool** of control units to create a **synthetic control** unit

• Choose the weights such that control is like California

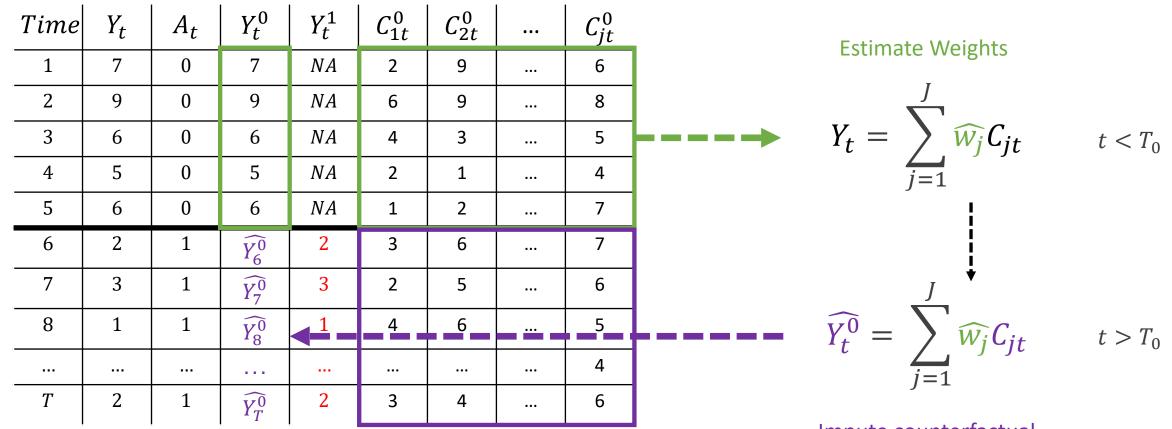


Time	Y_t	A_t	Y_t^0	Y_t^1	C_{1t}	C_{2t}	•••	C _{jt}
1	7	0	7	NA	2	9	•••	6
2	9	0	9	NA	6	9	•••	8
3	6	0	6	NA	4	3	•••	5
4	5	0	5	NA	2	1	•••	4
5	6	0	6	NA	1	2	•••	7
6	2	1	NA	2	3	6	•••	7
7	3	1	NA	3	2	5	•••	6
8	1	1	NA	1	4	6	•••	5
					•••	•••	•••	4
Т	2	1	NA	2	3	4		6

Synthetic Control

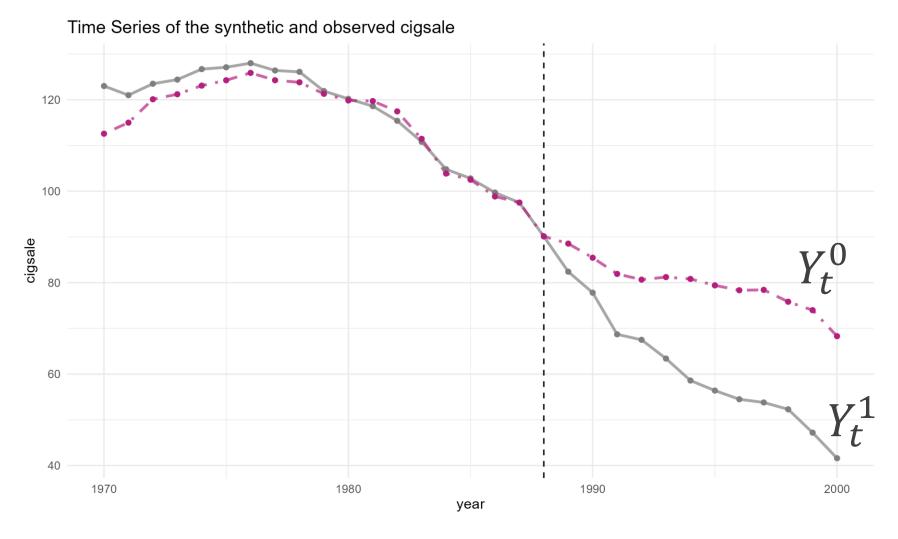


Synthetic Control



Impute counterfactual

$$\widehat{CE}_t = Y_t^1 - \widehat{Y_t^0}$$



- Observed - Synthetic

Dashed line denotes the time of the intervention.

- Choose weights such that the synthetic control **looks like** the treated unit
- Use only pre-intervention data for this
- Weights should be positive and sum to one Interpolation constraint / convex hull

What does it mean to "look like" California? This is a choice by the researcher!

- Pre-intervention target variable
 - Cigarette sales in certain years
- Pre-intervention covariates
 - Population composition
 - Average income of population
 - Price of cigarettes
 - Beer consumption

- Simultaneous estimation of two weights
 - Unit weights *w_j* How important is each donor pool unit *j*?
 - Variable weights v_h How important is each variable p?
- Choose *w* to minimize *v*-weighed multivariate Euclidean distance between treated and synthetic control pre-intervention

$$\widehat{w}_j = \min_{w_j} \left\| v \cdot (X_T - w^T X_D) \right\|$$

• Like nearest neighbours matching!

How to choose v_h ?

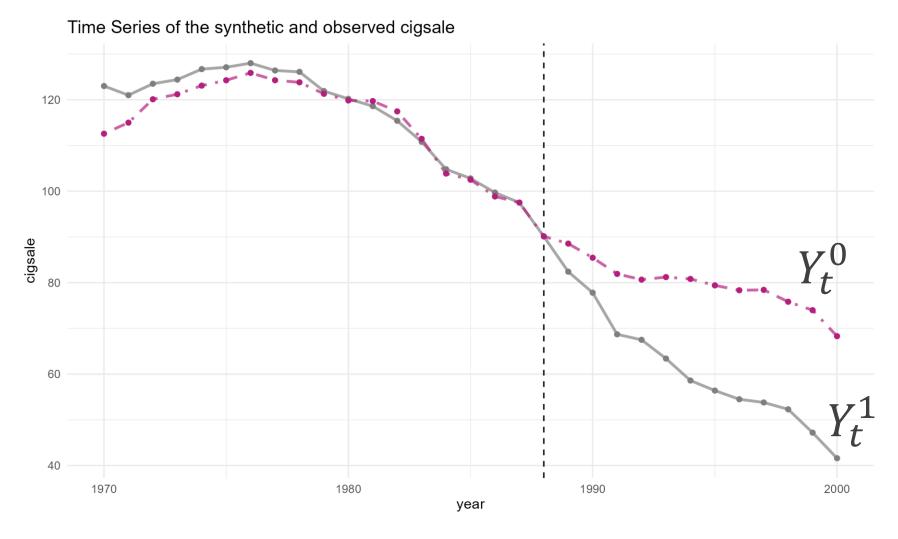
Simple

Use inverse of variance of each variable *h*

Like scaling the variables and then using unweighted Euclidean distance matching

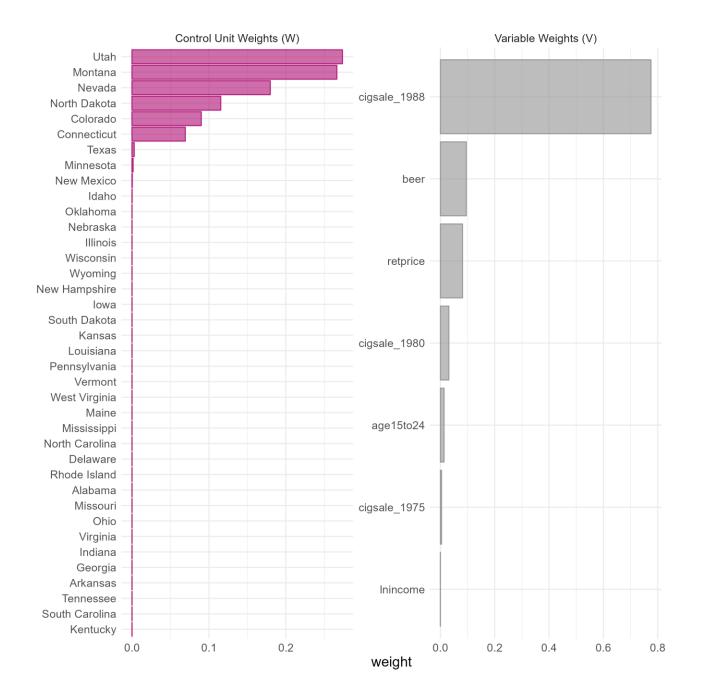
Complex

Choose *v* such that root mean squared prediction error (RMSPE) on pre-intervention target variable is minimized Increased importance of good pre-intervention prediction



- Observed - Synthetic

Dashed line denotes the time of the intervention.



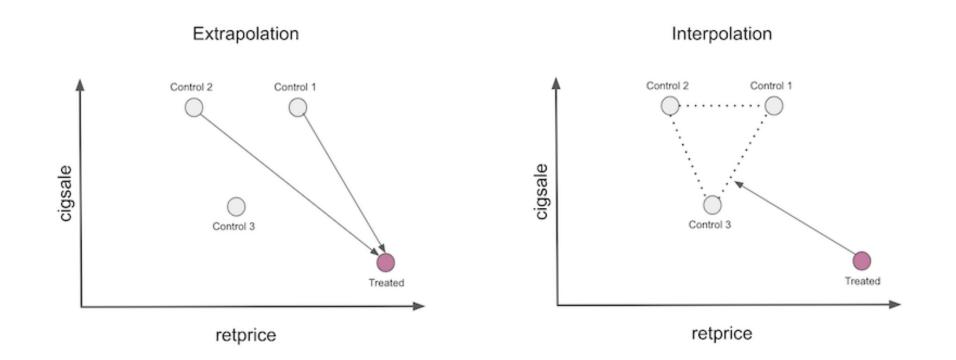
Convex hull condition

Distribution of covariate and target variables in donor pool should cover treated unit

• It should be possible to interpolate the target unit values pre-intervention using the donor pool units

This is a way of ensuring that the **target unit** is not **too different** from the units that go into the synthetic control

Interpolation



Alves, M. F. (2022). Causal inference for the brave and true.

Key Assumption

No interference / spillover:

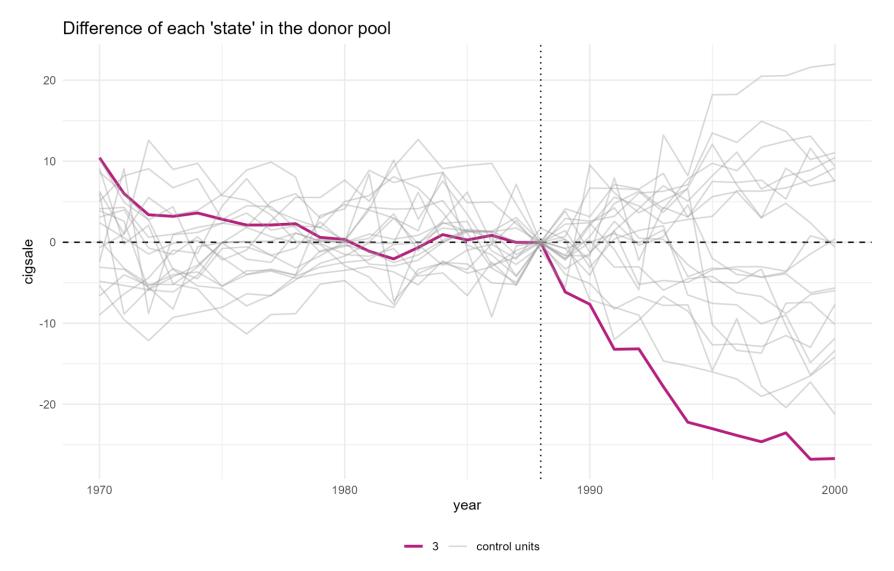
The donor pool units do not receive any intervention effect

Example spillover effects

- Californians living near the border may buy their cigarettes in states across the border
- Other states may pass laws similar to on California

How to quantify uncertainty?

- Most common method: permutation test
- Apply synthetic control method many times, once for each unit in the donor pool
- These units have no intervention effect
- Create reference/null distribution of Y_t^0
- Compare target unit's counterfactual to reference distribution
- Obtain a permutation p-value



Pruned all placebo cases with a pre-period RMSPE exceeding two times the treated unit's pre-period RMSPE.

There are many choices

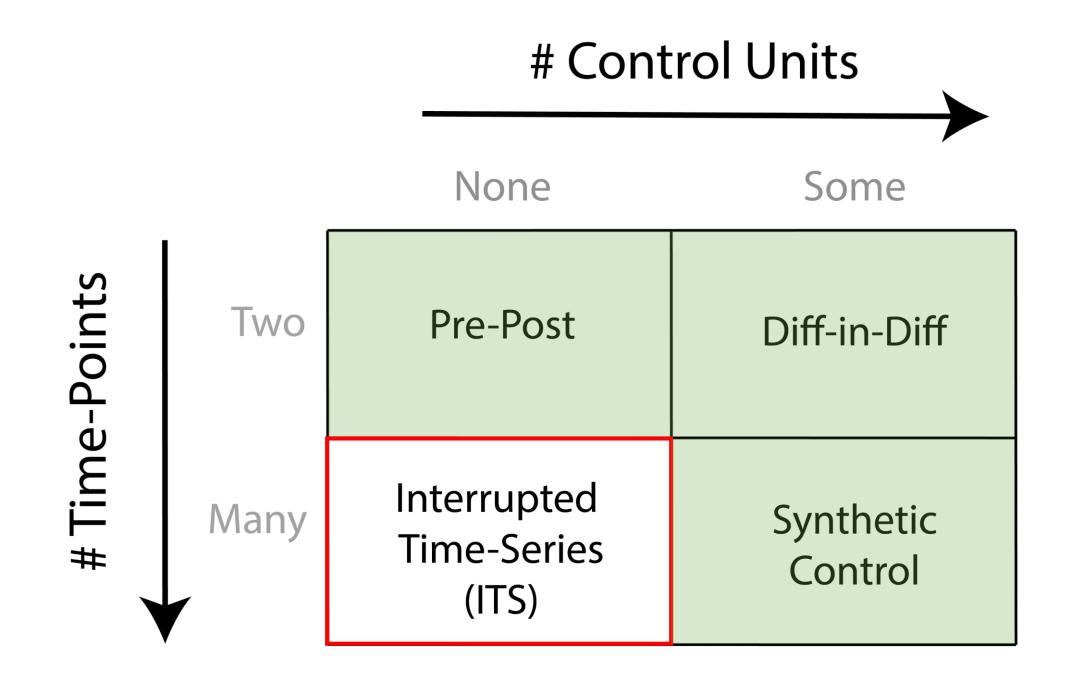
- Which units in the donor pool?
- Which control variables?
- What should my weights optimize?
- How many nonzero unit weights should I get?
- What settings do I give to the nonlinear optimizer?

"researcher degrees of freedom"

There are many choices

- These choices influence your causal estimate \widehat{CE}_t
- Think of your causal estimate as "conditional" on the "model" (choices)
- Investigate the impact of different choices through robustness checks / sensitivity analysis

Interrupted Time Series (in brief)



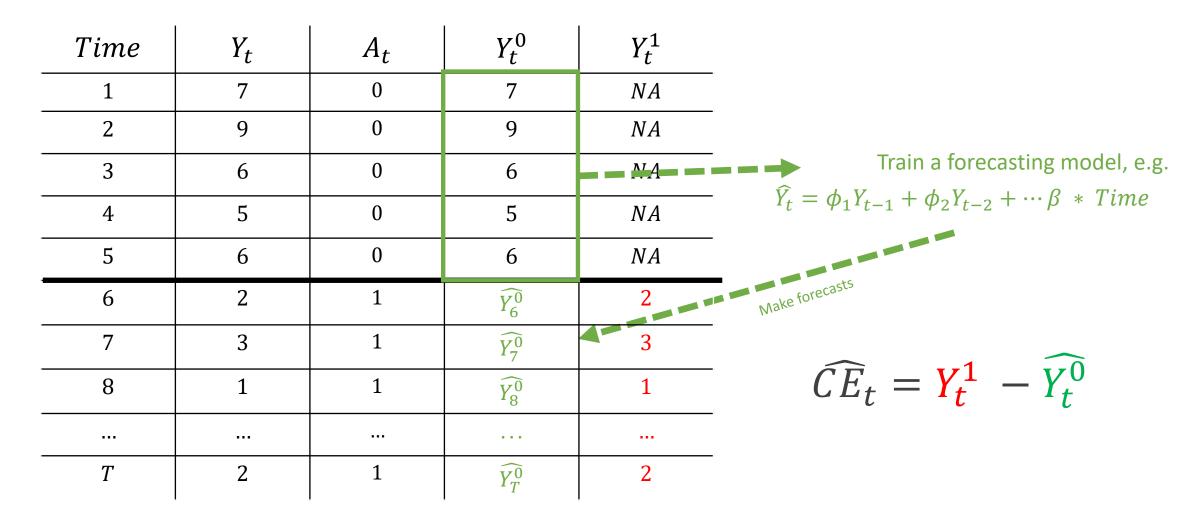
Interrupted Time Series

Another popular method which is built on **predicting** the counterfactual

Here the prediction is based on a **time-forward** or **forecasting** model

• I.e. we use **past** pre-intervention data to **impute** the missing counterfactual at each point in time

Interrupted Time Series



Building a forecasting model

Much of the challenge of this approach is in choosing an appropriate **forecasting** model

These can be very simple or very complex, e.g.:

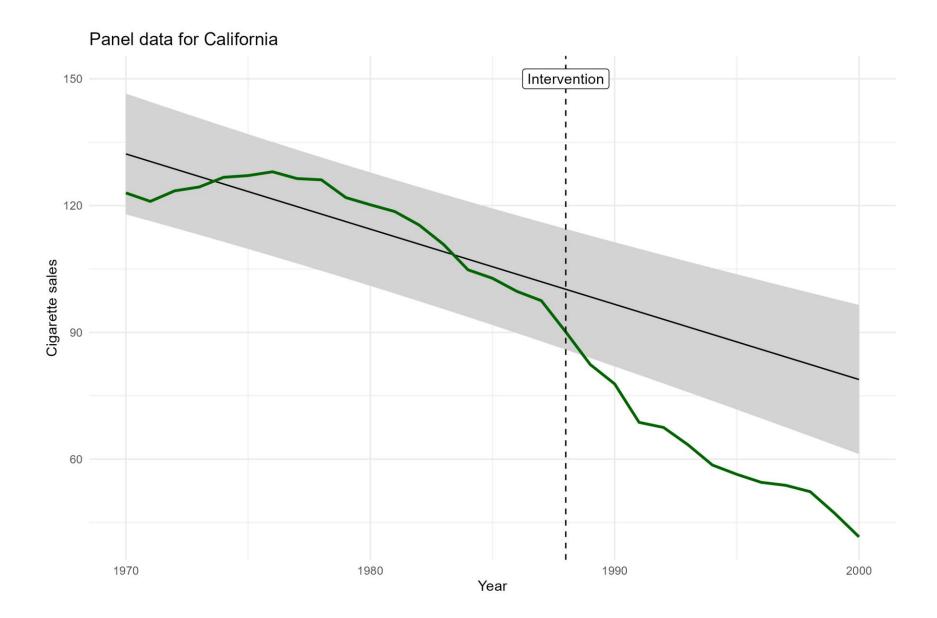
• We can forecast by fitting a **growth curve** which would model the overall time trend

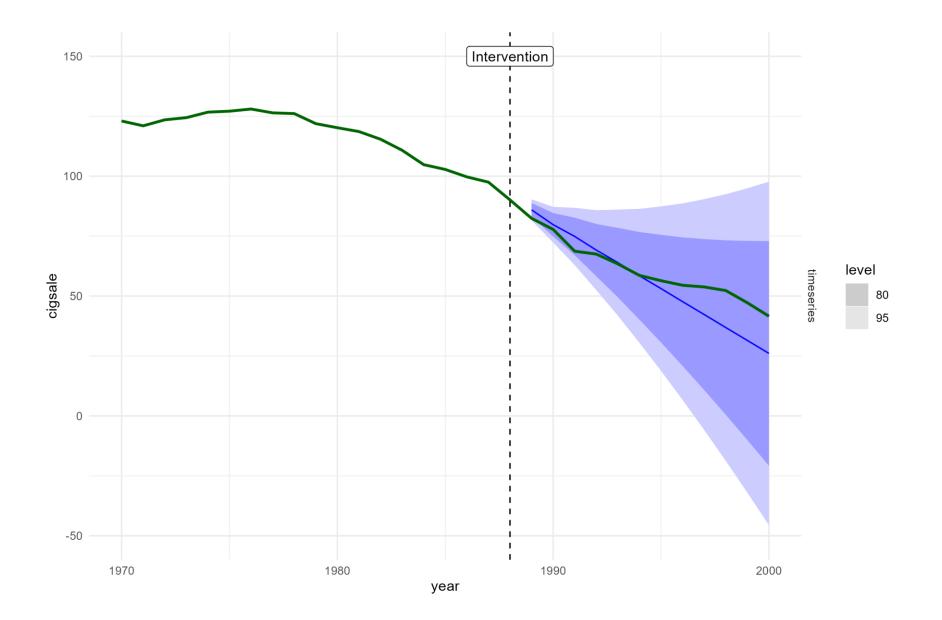
 $Y_t = \beta_0 + \beta_1 Time + e_t$

• We can forecast by using **time-series models** that model **autocorrelation**

$$Y_t = \phi_1 Y_{t-1} + e_t$$
 $Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + e_t$ $Y_t - Y_{t-1} = \gamma e_{t-1} + e_t$

e.g. ARIMA models can account for autocorrelation and time trends





Key Assumptions

Compared to pre-post, we do not assume away the trend, but instead model it directly

But our inferences about the causal effect are entirely dependent on being able to fit **an appropriate forecasting model**

- i.e. one that correctly captures the trend(s) and autocorrelation structures in the data

In practice, this may be **very difficult**

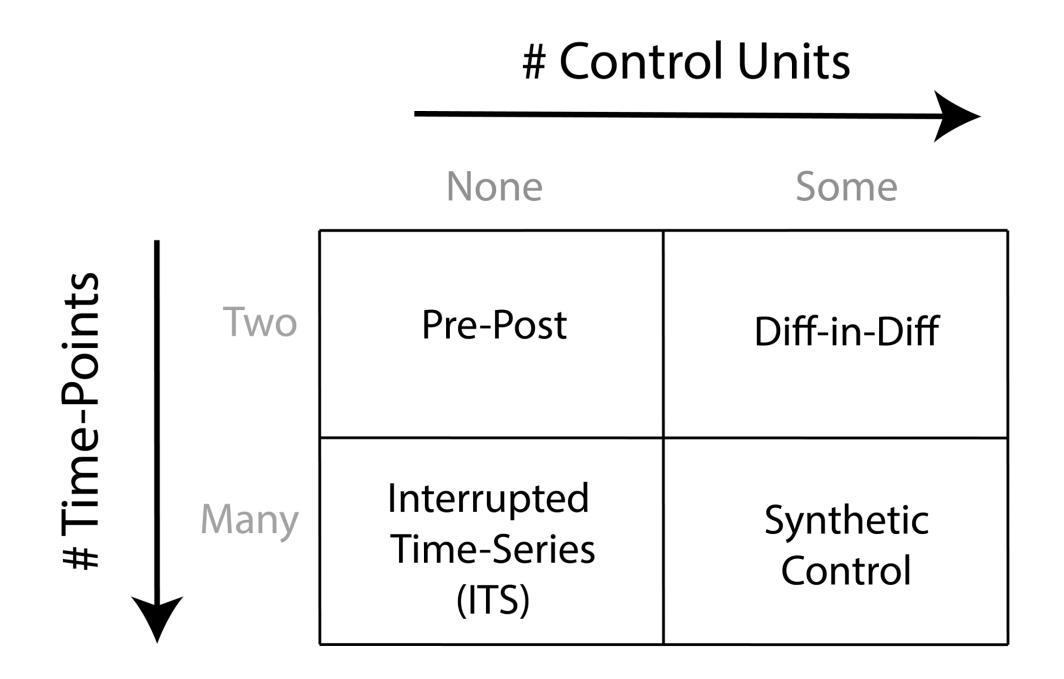
Different policy evaluation methods have been developed across a variety of different disciplines

• Economics, Epidemiology/Public health, Social Sciences

These methods differ in terms of:

- The **amount** and **type** of information they use
 - Amount of time-points and amount of potential "control" units
- The specific **statistical approach** they take
- The types of **assumptions** they make

Using potential outcomes, we can more readily understand and compare these different methods



So which method is best?

The answer **in part** depends on what type and amount of data you have

- But this is the **easy part**

The answer in practice depends on **domain knowledge**

- The **hard part** is to figure out which **assumptions** you need for causal inference and whether they are reasonable in your particular use case
- <u>It may simply not be possible in some cases!</u>
- E.g. DiD won't work if trends are not parallel; synthetic control won't work if there is interference between units (no matter how much data you have!)
- Often, methods which are "data hungry" can relax some assumptions, but:

There is no free lunch!

Thanks!

oisinryan.org UU: <u>Special Interest Group in Causal Data Science</u>

Useful References

Difference in Differences

Angrist, J. D., & Krueger, A. B. (1999). Empirical strategies in labor economics. In Handbook of labor economics (Vol. 3, pp. 1277-1366). Elsevier.

Angrist, J. D., & Pischke, J. S. (2009). Mostly harmless econometrics: An empiricist's companion. Princeton university press.

Caniglia, E. C., & Murray, E. J. (2020). Difference-in-difference in the time of cholera: a gentle introduction for epidemiologists. *Current epidemiology reports*, *7*, 203-211.

Interrupted Time Series

Bernal, J. L., Cummins, S., & Gasparrini, A. (2017). Interrupted time series regression for the evaluation of public health interventions: a tutorial. International journal of epidemiology, 46(1), 348-355.

Bernal, J.L, Cummins, S., & Gasparrini, A. (2019). Difference in difference, controlled interrupted time series and synthetic controls. International journal of epidemiology, 48(6), 2062-2063.

Useful References

Synthetic Control

Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control methods for comparative case studies: Estimating the effect of California's tobacco control program. Journal of the American Statistical Association, 105(490), 493-505.

Abadie, A. (2021). Using synthetic controls: Feasibility, data requirements, and methodological aspects. Journal of Economic Literature, 59(2), 391-425.

CausalImpact

Brodersen, K. H., Gallusser, F., Koehler, J., Remy, N., & Scott, S. L. (2015). Inferring causal impact using Bayesian structural time-series models. The Annals of Applied Statistics, 247-274.

Linden, A. (2018). Combining synthetic controls and interrupted time series analysis to improve causal inference in program evaluation. Journal of evaluation in clinical practice, 24(2), 447-453.

http://google.github.io/CausalImpact/CausalImpact.html

Useful References

Synthetic DiD

Arkhangelsky, D., Athey, S., Hirshberg, D. A., Imbens, G. W., & Wager, S. (2021). Synthetic difference-in-differences. *American Economic Review*, *111*(12), 4088-4118.

More on Causal Policy Evaluation

Free online course materials made by Andrew Heiss Program Evaluation for Public Service <u>https://evalf22.classes.andrewheiss.com/content/</u>