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Motivating example: cervical cancer screening

▶ We have data from Hospital Universitario de Caracas, Venezuela:1

X : Demographic and medical information, available through digital medical record
(age, use of contraceptives, STDs, etc.)

Y : Presence of cervical cancer

▶ Suppose we want to estimate E[Y |X ] to predict cervical cancer in large-scale screening
of the population.

▶ Patients in this dataset are self-selected: their own initiative caused them to be
recorded in this dataset.

Question: Can we use the estimated model Ê[Y |X ] for population screening?

(assume Ê[Y |X ] ≈ E[Y |X ])

1Available at https://archive.ics.uci.edu/ml/datasets/Cervical+cancer+(Risk+Factors).
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Selection bias: available data

X Y

x1 y1
...
xm ym

xm+1 ym+1
...
xn yn

X Y S

x1 y1 1
...
xm ym 1

xm+1 ym+1 0
...
xn yn 0

Sample ∼ P(X ,Y |S = 1) =⇒ Ê[Y |X , S = 1]

Population ∼ P(X ,Y ) =⇒ E[Y |X ]

Question: Can we use the estimated model Ê[Y |X , S = 1] for population screening?

⇐⇒ Do we have E[Y |X ,S = 1] = E[Y |X ]?
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A taxonomy of selection mechanisms

For estimating E[Y |X ] from P(X ,Y |S = 1), selection is:

Ignorable2

Y ⊥⊥S |X

E[Y |X ] = E[Y |X ,S = 1]

YX

S

Nonignorable

Y ⊥̸⊥S |X

E[Y |X ] ̸= E[Y |X ,S = 1]

YX

S

2Zadrozny [2004], Wei Fan et al. [2005]
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Ignorable selection bias

Y ⊥⊥S |X , hence E[Y |X , S = 1] = E[Y |X ]

X ∼ U([−5, 5])

Y = X 2 +N (0, 1)

S ∼ Bernoulli (σ(X ))

YX

S
X

Y
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Ignorable selection bias

Y ⊥⊥S |X , hence E[Y |X , S = 1] = E[Y |X ]

Positivity: supp(P(X |S = 1)) = supp(P(X ))

X ∼ U([−5, 5])

Y = X 2 +N (0, 1)

S = 1{X ≤ 1}

YX

S
X

Y
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Ignorable selection bias

Y ⊥⊥S |X , hence E[Y |X , S = 1] = E[Y |X ]

X ∼ U([−5, 5])

Y = X 2 +N (0, 1)

S = 1{|X | > 2}

YX

S
X

Y
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Nonignorable selection bias

Y ⊥̸⊥S |X , hence E[Y |X , S = 1] ̸= E[Y |X ]

X ∼ U([−5, 5])

Y = X 2 +N (0, 1)

S = 1{Y > 5}

YX

S
X

Y
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Nonignorable selection bias

Y ⊥̸⊥S |X , hence E[Y |X , S = 1] ̸= E[Y |X ]

X ∼ U([−5, 5])

Y = X 2 +N (0, 1)

S = 1{Y > 1}

YX

S
X

Y
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Motivating example: cervical cancer screening

X : Demographic and medical information, available through digital medical record
(age, use of contraceptives, STDs, etc.)

Y : Presence of cervical cancer
▶ Patients in this dataset are self-selected: their own initiative caused them to be

recorded in this dataset.

Question: Can we use the estimated model Ê[Y |X , S = 1] for population screening?

Answer: It depends on the selection mechanism. Suppose:

YX

Z

S

Z : Symptoms

Then Y ⊥̸⊥S |X , so E[Y |X ,S = 1] ̸= E[Y |X ].

Answer: No.

But Y ⊥⊥S |X ,Z . Can we leverage this somehow?

12 / 39



Motivating example: cervical cancer screening

X : Demographic and medical information, available through digital medical record
(age, use of contraceptives, STDs, etc.)

Y : Presence of cervical cancer
▶ Patients in this dataset are self-selected: their own initiative caused them to be

recorded in this dataset.

Question: Can we use the estimated model Ê[Y |X , S = 1] for population screening?
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Repeated regression

▶ We have Y ⊥⊥S |X ,Z , hence we can write3

E[Y |X ] = E[E[Y |Z ,X ]|X ]

= E[E[Y |X ,Z , S = 1]|X ].

▶ If we have data from P(X ,Y ,Z |S = 1), then we can estimate Ê[Y |X ,Z ,S = 1]...
▶ and if we additionally have data (x , z) ∼ P(X ,Z ), we can

▶ generate pseudo-labels Ỹ := Ê[Y |X = x ,Z = z ,S = 1]
▶ and regress E[Ỹ |X ].4

▶ Positivity assumption: supp(P(X ,Z |S = 1)) = supp(P(X ,Z ))

Closely related to standardization/outcome regression:5

E[Y |do(X = x)] = E[E[Y |X = x ,Z ]]

3Bareinboim et al. [2014]
4Boeken et al. [2023]
5Hernán and Robins [2021], known as standardization or outcome regression
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▶ and if we additionally have data (x , z) ∼ P(X ,Z ), we can
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Repeated regression

X Z Y S

x1 z1 y1 1
...
xm zm ym 1

xm+1 zm+1 ym+1 0
...
xk zk yk 0

P(X ,Y ,Z |S = 1)

=⇒ Ê[Y |X ,Z ,S = 1]

X Z

x1 z1
...

...
...

...
...

...
xn zn

P(X ,Z )
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...

...
...

...
...

...
...

...
...

xn zn ỹn
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...

...
...

...
...

...
...

...
...

xn zn ỹn
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Learning using privileged information

We have Y ⊥⊥S |X ,Z , so E[Y |X ,Z , S = 1] = E[Y |X ,Z ], so the model Ê[Y |X ,Z ,S = 1]
is already unbiased... Why not consider this model, instead of estimating E[Y |X ]?
In practice, measuring Z at test time might be costly or unfeasible.

We consider a learning paradigm called Learning Using Privileged Information (LUPI),
where, at the training stage, additional information Z is provided about training example X .

The goal of the LUPI paradigm is to use privileged information to significantly increase the
rate of convergence.6

We have just shown that privileged information can also be used to recover from selection
bias.

6Vapnik and Vashist [2009], Vapnik and Izmailov [2015]
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Extending the taxonomy of selection mechanisms

For estimating E[Y |X ] from P(X ,Y |S = 1), selection is:

Ignorable

Y ⊥⊥S |X

E[Y |X ] = E[Y |X ,S = 1]

YX

S

Nonignorable

Y ⊥̸⊥S |X

E[Y |X ] ̸= E[Y |X ,S = 1]

YX

S

Privilegedly ignorable7

Y ⊥⊥S |X ,Z , P(X ,Z )

E[Y |X ] =
E[E[Y |X ,Z ,S = 1]|X ]

Y

Z

X

S

7Boeken et al. [2023]
16 / 39



Simulated example

X

Y

X = εX

Z = 3 sin(X ) + εZ

Y =
1

2
X + Z + εY

S ∼ Bernoulli(pS(X ,Z ))

Y

Z

X

S
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Simulated example

True
NaiveX

Y

X = εX

Z = 3 sin(X ) + εZ

Y =
1

2
X + Z + εY

S ∼ Bernoulli(pS(X ,Z ))

Y

Z

X

S
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Simulated example: repeated regression

Y ⊥⊥S |X ,Z , so

E[Y |X ] = E[E[Y |X ,Z , S = 1]|X ]

1. Estimate

µ̃(x , z) = Ê[Y |X = x ,Z = z ,S = 1]

≈ 1

2
x + z

2. Generate pseudo-labels

Ỹi = µ̃(Xi ,Zi )

3. Fit µ̂(x) := Ê[Ỹ |X ]

X

Y
18 / 39
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Motivating example: cervical cancer screening

We have data:

X : Demographic and medical information, available through digital
medical record (age, use of contraceptives, STDs, etc.)

Y : Presence of cervical cancer

Z : Symptoms

▶ Patients are self-selected,
so we have data from P(X ,Y ,Z |S = 1)

YX

Z

S

Question: Can we use the estimated model Ê[Y |X , S = 1] for population screening?

Answer: Depends on the selection mechanism...
... so no...
...but if we additionally have data from P(X ,Z ),
then we can estimate E[Y |X ] with repeated regression!

19 / 39
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Summary (selection bias)

When estimating E[Y |X ] from a dataset with selection bias:

▶ It is generally not testable whether we have to correct for bias

▶ Can motivate this by modelling the causal graph of the DGP

▶ Ignorable: Y ⊥⊥S |X , then no correction is necessary.
Watch out for positivity violations!

▶ Nonignorable: Y ⊥̸⊥S |X , naive regression is biased, but
▶ Privilegedly ignorable: Y ⊥⊥S |X ,Z and unbiased sample P(X ,Z ), then we can apply the

repeated regression procedure
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Missing response (selective labelling)
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Example: selective labelling (the bank loan problem)

▶ X : digital data in loan application

▶ Y : default

▶ Ŷ : estimated probability of default

▶ Z : information from interview

▶ S : issue of the loan

X Y

Ŷ Z

S

Goal: re-train Ŷ = Ê[Y |X ]

22 / 39



Available data: missing response

X Z S Y

x1 z1 1 y1
P(X ,Y ,Z |S = 1)...

xm zm 1 ym

xm+1 zm+1 0 ym+1
...
xn zn 0 yn

P(X ,Z ,S)

23 / 39



Available data: missing reponse vs. selection bias

X Z S Y

x1 z1 1 y1
...
xm zm 1 ym

xm+1 zm+1 0 ym+1
...
xn zn 0 yn

X Z S Y

x1 z1 1 y1
...
xm zm 1 ym

xm+1 zm+1 0 ym+1
...
xn zn 0 yn

X Z

x1 z1
...

...
...

...
...

...
xn zn
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Example: selective labelling (automated hiring)

▶ X : job application (cv, letter)

▶ Y : successful hire (binary)

▶ Ŷ : estimated probability of success

▶ Z : psychological test

▶ S : hire

X Y

Ŷ Z

S

Goal: re-train Ŷ = Ê[Y |X ]

We have Y ⊥̸⊥S |X , so E[Y |X ,S = 1] ̸= E[Y |X ]

25 / 39



Exercise (work in pairs)

Hypothesize a setting in which we have

▶ covariates X

▶ target variable Y

▶ prediction Ŷ = Ê[Y |X ]

▶ privileged information Z

▶ selection indicator S ;

draw a causal graph G of this setting, and check that it satisfies

▶ X ̸⊥G Y

▶ Y ̸⊥G S |X
▶ Y ⊥G S |X ,Z .

26 / 39



BREAK
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Example: selective labelling (automated hiring)

▶ X : job application (cv, letter)

▶ Y : successful hire (binary)

▶ Ŷ : estimated probability of success

▶ Z : psychological test

▶ S : hire

X Y

Ŷ Z

S

Goal: re-train Ŷ = Ê[Y |X ]

We have Y ⊥̸⊥S |X , so E[Y |X ,S = 1] ̸= E[Y |X ], but Y ⊥⊥S |X ,Z , so...
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Repeated regression for missing response

X Z S Y

x1 z1 1 y1 P(X ,Y ,Z |S = 1)
...

=⇒ Ê[Y |X ,Z ,S = 1]

xm zm 1 ym

xm+1 zm+1 0 ym+1
...
xn zn 0 yn

P(X ,Z ,S)
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Repeated regression for missing response

X Z S Y Ỹ

x1 z1 1 y1 ỹ1 P(X ,Y ,Z |S = 1)
... =⇒ Ê[Y |X ,Z ,S = 1]

xm zm 1 ym ỹm

xm+1 zm+1 0 ym+1 ỹm+1
...
xn zn 0 yn ỹn

P(X ,Z , Ỹ ,S)

=⇒ E[Ỹ |X ]
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...
xn zn 0 yn ỹn
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A taxonomy of missingness mechanisms10

For estimating E[Y |X ] from P(X ,Y |S = 1), selection is:

Ignorable
(MAR)8

Y ⊥⊥S |X

E[Y |X ] = E[Y |X ,S = 1]

YX

S

Nonignorable
(MNAR)

Y ⊥̸⊥S |X

E[Y |X ] ̸= E[Y |X ,S = 1]

YX

S

Privilegedly ignorable
(PMAR)9

Y ⊥⊥S |X ,Z

E[Y |X ] =
E[E[Y |X ,Z ,S = 1]|X ]

Y

Z

X

S
9Robins and Rotnitzky [1995]
9Boeken et al. [2023]
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Weighted regression

Empirical risk minimization:
Assuming e.g. a parametric model E[Y |X ] = g(X ;β), given data
(X1,Y1), ..., (Xn,Yn) ∼ P(X ,Y ) estimate

β̂ := argmin
β

Ê[ℓ(X ,Y )] = argmin
β

1

n

n∑
i=1

ℓ(g(Xi ;β),Yi )

and use Ê[Y |X = x ] = g(x ; β̂).
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Weighted regression11

Assuming PMAR we have Y ⊥⊥S |X ,Z , so

E[ℓ(X ,Y )] = E[w(X ,Z )ℓ(x , y)|S = 1]

w(X ,Z ) = P(S = 1)/P(S = 1|X ,Z )

Given data (X1,Y1,Z1), ..., (Xn,Yn,Zn) ∼ P(X ,Y ,Z |S = 1) estimate

β̂ := argmin
β

n∑
i=1

w(Xi ,Zi )ℓ(g(Xi ;β),Yi )

and use Ê[Y |X = x ] = g(x ; β̂).

11Horvitz and Thompson [1952], inverse probability weighting, inverse propensity weighting
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ℓ(x , y)

p(x , y , z)
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p(x , y , z |S = 1)dxdydz

=

∫
ℓ(x , y)

p(S = 1)
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=

∫
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Simulated example

True
Naive
RRX

Y

X = εX

Z = 3 sin(X ) + εZ

Y =
1

2
X + Z + εY

S ∼ Bernoulli(pS(X ,Z ))

Y

Z

X

S
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Simulated example: weighted regression

Y ⊥⊥S |X ,Z , so

E[ℓ(X ,Y )] = E[w(X ,Z )ℓ(X ,Y )|S = 1]

w(X ,Z ) = P(S = 1)/P(S = 1|X ,Z )

Assuming e.g. a parametric model
E[Y |X ] = g(X ;β), estimate

β̂ := argmin
β

n∑
i=1

w(Xi ,Zi )ℓ(g(Xi ;β),Yi )

and use Ê[Y |X = x ] = g(x ; β̂).

True
IWX

Y
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Simulated example: comparing methods

True
Naive
RR
IWX

Y

X = εX

Z = 3 sin(X ) + εZ

Y =
1

2
X + Z + εY

S ∼ Bernoulli(pS(X ,Z ))

Y

Z

X

S
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Summary

When estimating E[Y |X ] from a dataset with selection bias:

▶ It is generally not testable whether we have to correct for bias

▶ Can motivate this by modelling the causal graph of the DGP

▶ Ignorable: Y ⊥⊥S |X , then no correction is necessary.
Watch out for positivity violations!

▶ Nonignorable: Y ⊥̸⊥S |X , naive regression is biased, but
▶ Privilegedly ignorable: Y ⊥⊥S |X ,Z and unbiased sample P(X ,Z ), then we can apply the

repeated regression procedure

Missingness response / selective labelling:

▶ Example: prediction models used for selective labelling

▶ Same characterisation of the regression problem under different missingness mechanisms

▶ Characterisation not testable, but can be motivated with causal model.

▶ Repeated regression can also be applied for re-training

▶ Importance weighting as an alternative estimation method
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Takeaways

Before deploying an ML model, pay attention to any mismatch between your train and test
set.

Causal modelling is a convenient tool for characterising such differences!

Repeated regression and importance weighting can be used for estimating a regression
model from biased data.
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