Correcting for selection bias and missing response SIKS course on Causal Inference

Philip Boeken p.a.boeken@uva.nl

¹University of Amsterdam The Netherlands

²Booking.com The Netherlands

May 30, 2023

Selection bias:

- Regression with selection biased data: when do we have to correct?
- Causal modelling of selection mechanisms
- Repeated regression procedure to correct for bias.

Missing response / selective labelling:

- Re-training of predictive model used for accepting/rejecting units
- Application of the same repeated regression procedure
- Importance weighting

Selection bias

- ▶ We have data from Hospital Universitario de Caracas, Venezuela:¹
 - X: Demographic and medical information, available through digital medical record (age, use of contraceptives, STDs, etc.)
 - Y: Presence of cervical cancer
- ► Suppose we want to estimate E[Y|X] to predict cervical cancer in large-scale screening of the population.
- Patients in this dataset are self-selected: their own initiative caused them to be recorded in this dataset.

¹Available at https://archive.ics.uci.edu/ml/datasets/Cervical+cancer+(Risk+Factors).

- ▶ We have data from Hospital Universitario de Caracas, Venezuela:¹
 - X: Demographic and medical information, available through digital medical record (age, use of contraceptives, STDs, etc.)
 - Y: Presence of cervical cancer
- ► Suppose we want to estimate E[Y|X] to predict cervical cancer in large-scale screening of the population.
- Patients in this dataset are self-selected: their own initiative caused them to be recorded in this dataset.

Question: Can we use the estimated model $\hat{\mathbb{E}}[Y|X]$ for population screening?

(assume $\hat{\mathbb{E}}[Y|X] \approx \mathbb{E}[Y|X]$)

¹Available at https://archive.ics.uci.edu/ml/datasets/Cervical+cancer+(Risk+Factors).

X	Y	
<i>x</i> ₁	У1	
÷		
x _m	Уm	Population $\sim \mathbb{P}(X, V) \longrightarrow \mathbb{P}[Y X]$
x_{m+1}	y_{m+1}	$1 \text{ optiation } r \in \mathbb{I}(X, Y) \longrightarrow \mathbb{E}[Y X]$
÷		
x _n	Уn	

Х	Y	S	
<i>x</i> ₁	<i>y</i> ₁	1	
:			
x _m	Уm	1	$Population \to \mathbb{P}(Y, Y) \longrightarrow \mathbb{F}[Y Y]$
x_{m+1}	y_{m+1}	0	$\operatorname{Population} \sim \mathbb{P}(X, Y) \implies \mathbb{E}[Y X]$
÷			
x _n	Уn	0	

X	Y	S	
<i>x</i> ₁	<i>y</i> ₁	1	
:			$Sample \sim \mathbb{P}(X, Y S = 1) \implies \hat{\mathbb{E}}[Y X, S]$
x _m	Уm	1	$Population : \mathbb{P}(Y, Y) \longrightarrow \mathbb{P}[Y Y]$
x_{m+1}	y_{m+1}	0	$\mathbb{P} = \mathbb{P} \left[\mathcal{P} \left[\Lambda \right] \right] \xrightarrow{\mathcal{P}} \mathbb{E} \left[\mathcal{P} \left[\Lambda \right] \right]$
-			
Xn	Уn	0	

Question: Can we use the estimated model $\hat{\mathbb{E}}[Y|X, S = 1]$ for population screening?

Question: Can we use the estimated model $\hat{\mathbb{E}}[Y|X, S = 1]$ for population screening?

$$\iff$$
 Do we have $\mathbb{E}[Y|X, S = 1] = \mathbb{E}[Y|X]$?

A taxonomy of selection mechanisms

For estimating $\mathbb{E}[Y|X]$ from $\mathbb{P}(X, Y|S = 1)$, selection is:

lgnorable ²	Nonignorable
$Y \perp \!\!\!\perp S X$	Y⊥LS X
$\mathbb{E}[Y X] = \mathbb{E}[Y X, S = 1]$	$\mathbb{E}[Y X] eq \mathbb{E}[Y X, S = 1$

²Zadrozny [2004], Wei Fan et al. [2005]

A taxonomy of selection mechanisms

For estimating $\mathbb{E}[Y|X]$ from $\mathbb{P}(X, Y|S = 1)$, selection is:

²Zadrozny [2004], Wei Fan et al. [2005]

 $Y \perp S \mid X$, hence $\mathbb{E}[Y \mid X, S = 1] = \mathbb{E}[Y \mid X]$

 $egin{aligned} X &\sim \mathcal{U}([-5,5]) \ Y &= X^2 + \mathcal{N}(0,1) \ S &\sim \mathrm{Bernoulli}\left(\sigma(X)
ight) \end{aligned}$

 $Y \perp S \mid X$, hence $\mathbb{E}[Y \mid X, S = 1] = \mathbb{E}[Y \mid X]$

$$egin{aligned} X &\sim \mathcal{U}([-5,5]) \ Y &= X^2 + \mathcal{N}(0,1) \ S &= \mathbbm{1}\{X \leq 1\} \end{aligned}$$

 $Y \perp S \mid X$, hence $\mathbb{E}[Y \mid X, S = 1] = \mathbb{E}[Y \mid X]$ Positivity: $\operatorname{supp}(\mathbb{P}(X \mid S = 1)) = \operatorname{supp}(\mathbb{P}(X))$

 $egin{aligned} X &\sim \mathcal{U}([-5,5]) \ Y &= X^2 + \mathcal{N}(0,1) \ S &= \mathbbm{1}\{X \leq 1\} \end{aligned}$

 $Y \perp S \mid X$, hence $\mathbb{E}[Y \mid X, S = 1] = \mathbb{E}[Y \mid X]$

$$egin{aligned} X &\sim \mathcal{U}([-5,5]) \ Y &= X^2 + \mathcal{N}(0,1) \ S &= \mathbbm{1}\{|X|>2\} \end{aligned}$$

 $Y \not\parallel S \mid X$, hence $\mathbb{E}[Y \mid X, S = 1] \neq \mathbb{E}[Y \mid X]$

$$egin{aligned} X &\sim \mathcal{U}([-5,5]) \ Y &= X^2 + \mathcal{N}(0,1) \ S &= \mathbbm{1}\{Y > 5\} \end{aligned}$$

 $Y \not\perp S \mid X$, hence $\mathbb{E}[Y \mid X, S = 1] \neq \mathbb{E}[Y \mid X]$

$$egin{aligned} X &\sim \mathcal{U}([-5,5]) \ Y &= X^2 + \mathcal{N}(0,1) \ S &= \mathbbm{1}\{Y > 1\} \end{aligned}$$

- X: Demographic and medical information, available through digital medical record (age, use of contraceptives, STDs, etc.)
- Y: Presence of cervical cancer
- Patients in this dataset are self-selected: their own initiative caused them to be recorded in this dataset.

Question: Can we use the estimated model $\hat{\mathbb{E}}[Y|X, S = 1]$ for population screening?

- X: Demographic and medical information, available through digital medical record (age, use of contraceptives, STDs, etc.)
- Y: Presence of cervical cancer
- Patients in this dataset are self-selected: their own initiative caused them to be recorded in this dataset.

Question: Can we use the estimated model $\hat{\mathbb{E}}[Y|X, S = 1]$ for population screening?

Answer: It depends on the selection mechanism. Suppose:

Z: Symptoms Then $Y \not\perp S \mid X$, so $\mathbb{E}[Y|X, S = 1] \neq \mathbb{E}[Y|X]$.

Answer: No.

- X: Demographic and medical information, available through digital medical record (age, use of contraceptives, STDs, etc.)
- Y: Presence of cervical cancer
- Patients in this dataset are self-selected: their own initiative caused them to be recorded in this dataset.

Question: Can we use the estimated model $\hat{\mathbb{E}}[Y|X, S = 1]$ for population screening?

Answer: It depends on the selection mechanism. Suppose:

Z: Symptoms Then $Y \not\perp S \mid X$, so $\mathbb{E}[Y \mid X, S = 1] \neq \mathbb{E}[Y \mid X]$.

Answer: No.

But $Y \perp S \mid X, Z$. Can we leverage this somehow?

▶ We have $Y \perp S \mid X, Z$, hence we can write³

$$\mathbb{E}[Y|X] = \mathbb{E}[\mathbb{E}[Y|Z,X]|X] \ = \mathbb{E}[\mathbb{E}[Y|X,Z,S=1]|X].$$

▶ If we have data from $\mathbb{P}(X, Y, Z | S = 1)$, then we can estimate $\hat{\mathbb{E}}[Y | X, Z, S = 1]$...

- \blacktriangleright and if we additionally have data $(x,z)\sim \mathbb{P}(X,Z)$, we can
 - generate pseudo-labels $\tilde{Y} := \hat{\mathbb{E}}[Y|X = x, Z = z, S = 1]$
 - and regress $\mathbb{E}[\tilde{Y}|X]$.⁴

³Bareinboim et al. [2014]

⁴Boeken et al. [2023]

⁵Hernán and Robins [2021], known as *standardization* or *outcome regression*

▶ We have $Y \perp S \mid X, Z$, hence we can write³

$$\mathbb{E}[Y|X] = \mathbb{E}[\mathbb{E}[Y|Z,X]|X] \ = \mathbb{E}[\mathbb{E}[Y|X,Z,S=1]|X].$$

- ▶ If we have data from $\mathbb{P}(X, Y, Z | S = 1)$, then we can estimate $\hat{\mathbb{E}}[Y | X, Z, S = 1]$...
- ▶ and if we additionally have data $(x, z) \sim \mathbb{P}(X, Z)$, we can
 - ▶ generate pseudo-labels $\tilde{Y} := \hat{\mathbb{E}}[Y|X = x, Z = z, S = 1]$
 - and regress $\mathbb{E}[\tilde{Y}|X]$.⁴

▶ Positivity assumption: $supp(\mathbb{P}(X, Z|S = 1)) = supp(\mathbb{P}(X, Z))$

⁵Hernán and Robins [2021], known as *standardization* or *outcome regression*

³Bareinboim et al. [2014]

⁴Boeken et al. [2023]

▶ We have $Y \perp S \mid X, Z$, hence we can write³

$$\mathbb{E}[Y|X] = \mathbb{E}[\mathbb{E}[Y|Z,X]|X] \ = \mathbb{E}[\mathbb{E}[Y|X,Z,S=1]|X].$$

- ▶ If we have data from $\mathbb{P}(X, Y, Z | S = 1)$, then we can estimate $\hat{\mathbb{E}}[Y | X, Z, S = 1]$...
- ▶ and if we additionally have data $(x, z) \sim \mathbb{P}(X, Z)$, we can
 - ▶ generate pseudo-labels $\tilde{Y} := \hat{\mathbb{E}}[Y|X = x, Z = z, S = 1]$
 - and regress $\mathbb{E}[\tilde{Y}|X]$.⁴
- ▶ Positivity assumption: $supp(\mathbb{P}(X, Z | S = 1)) = supp(\mathbb{P}(X, Z))$

Closely related to standardization/outcome regression:⁵

$$\mathbb{E}[Y|\operatorname{do}(X=x)] = \mathbb{E}[\mathbb{E}[Y|X=x,Z]]$$

⁵Hernán and Robins [2021], known as *standardization* or *outcome regression*

³Bareinboim et al. [2014]

⁴Boeken et al. [2023]

X	Ζ	Y	S
<i>x</i> ₁	<i>z</i> ₁	<i>y</i> 1	1
x _m	z _m	Уm	1
x_{m+1}	Z_{m+1}	y_{m+1}	0
k	Z _k	Ук	0
$\mathbb{P}($	(X, Y, Z)	S=1)	

-							
X	Ζ	Y	5		X	Ζ	
<i>x</i> ₁	<i>z</i> ₁	<i>y</i> ₁	1		x_1	<i>z</i> 1	
÷					÷	÷	
x _m	Z _m	Уm	1		÷	÷	
x_{m+1}	Z_{m+1}	y_{m+1}	0		÷	÷	
÷					x _n	Zn	
X _k	Z _k	Ук	0		$\mathbb{P}(\lambda$	(, Z)	
$\mathbb{P}(X,Y,Z S=1)$							
=	$\Rightarrow \hat{\mathbb{E}}[Y]$	X, Z, S =	= 1]				

X	Ζ	Y	5	X	Ζ	ý
<i>x</i> ₁	<i>z</i> ₁	<i>y</i> ₁	1	x_1	<i>z</i> 1	ỹ
:				÷	÷	÷
x _m	z _m	Уm	1	:	÷	÷
x_{m+1}	Z_{m+1}	y_{m+1}	0	:	:	:
:				x _n	zn	\tilde{y}
X_k	Z_k	Ук	0	10/	V 7	آ

X	Ζ	Y	S	X	Ζ	Ŷ
x_1	<i>z</i> ₁	<i>y</i> 1	1	<i>x</i> ₁	<i>z</i> 1	\tilde{y}_1
÷				÷	÷	÷
x _m	Z _m	Уm	1	÷	÷	÷
x_{m+1}	Z_{m+1}	y_{m+1}	0	÷	:	÷
:				xn	zn	ŷη
X_k	Z _k	Ук	0	₽(X, Z	Ϋ́)
$\mathbb{P}(X,Y,Z S=1)$					≻ Ê[$\tilde{Y} X]$
=	$\Rightarrow \hat{\mathbb{E}}[Y]$	X, Z, S =	= 1]			

We have $Y \perp S \mid X, Z$, so $\mathbb{E}[Y \mid X, Z, S = 1] = \mathbb{E}[Y \mid X, Z]$, so the model $\hat{\mathbb{E}}[Y \mid X, Z, S = 1]$ is already unbiased... Why not consider this model, instead of estimating $\mathbb{E}[Y \mid X]$? In practice, measuring Z at test time might be **costly** or **unfeasible**.

We consider a learning paradigm called Learning Using Privileged Information (LUPI), where, at the training stage, additional information Z is provided about training example X.

The goal of the LUPI paradigm is to use privileged information to significantly increase the rate of convergence.⁶

We have just shown that privileged information can also be used to recover from selection bias.

⁶Vapnik and Vashist [2009], Vapnik and Izmailov [2015]

Extending the taxonomy of selection mechanisms

For estimating $\mathbb{E}[Y|X]$ from $\mathbb{P}(X, Y|S = 1)$, selection is:

Privilegedly ignorable ⁷	Nonignorable	Ignorable
$Y \perp S X, Z, \mathbb{P}(X, Z)$	$Y \not \perp S X$	$Y \perp \!\!\!\perp S X$
$\mathbb{E}[Y X] =$	$\mathbb{E}[Y X] \neq \mathbb{E}[Y X, S = 1]$	$\mathbb{E}[Y X] = \mathbb{E}[Y X, S = 1]$
$\mathbb{E}[\mathbb{E}[I \mid X, Z, S = I] \mid X]$	$X \rightarrow Y$	$(X) \rightarrow (Y)$
	(S)	(s)
(S)←(Z)		

⁷Boeken et al. [2023]

$$X = \varepsilon_X$$

$$Z = 3\sin(X) + \varepsilon_Z$$

$$Y = \frac{1}{2}X + Z + \varepsilon_Y$$

$$S \sim \text{Bernoulli}(p_S(X, Z))$$

$$X = \varepsilon_X$$

$$Z = 3\sin(X) + \varepsilon_Z$$

$$Y = \frac{1}{2}X + Z + \varepsilon_Y$$

$$S \sim \text{Bernoulli}(p_S(X, Z))$$

$$X = \varepsilon_X$$

$$Z = 3\sin(X) + \varepsilon_Z$$

$$Y = \frac{1}{2}X + Z + \varepsilon_Y$$

$$S \sim \text{Bernoulli}(p_S(X, Z))$$

 $Y \perp \!\!\!\perp S \mid X, Z$, so

 $\mathbb{E}[Y|X] = \mathbb{E}[\mathbb{E}[Y|X, Z, S = 1]|X]$

 $Y \perp \!\!\!\perp S \mid X, Z$, so

 $\mathbb{E}[Y|X] = \mathbb{E}[\mathbb{E}[Y|X, Z, S = 1]|X]$

1. Estimate

$$\begin{split} \widetilde{\mu}(x,z) &= \hat{\mathbb{E}}[Y|X=x, Z=z, S=1] \ &pprox rac{1}{2}x+z \end{split}$$

 $Y \perp \!\!\!\perp S \mid X, Z$, so

 $\mathbb{E}[Y|X] = \mathbb{E}[\mathbb{E}[Y|X, Z, S = 1]|X]$

1. Estimate

$$\begin{split} \widetilde{\mu}(x,z) &= \hat{\mathbb{E}}[Y|X=x, Z=z, S=1] \ &pprox rac{1}{2}x+z \end{split}$$

2. Generate pseudo-labels

$$ilde{Y}_i = ilde{\mu}(X_i, Z_i)$$

 $Y \perp \!\!\!\perp S \mid X, Z$, so

 $\mathbb{E}[Y|X] = \mathbb{E}[\mathbb{E}[Y|X, Z, S = 1]|X]$

1. Estimate

$$\begin{split} \widetilde{\mu}(x,z) &= \hat{\mathbb{E}}[Y|X=x, Z=z, S=1] \ &pprox rac{1}{2}x+z \end{split}$$

2. Generate pseudo-labels

$$ilde{Y}_i = ilde{\mu}(X_i, Z_i)$$

3. Fit $\hat{\mu}(x) := \hat{\mathbb{E}}[\tilde{Y}|X]$

We have data:

- X: Demographic and medical information, available through digital medical record (age, use of contraceptives, STDs, etc.)
- Y: Presence of cervical cancer
- Z: Symptoms
- Patients are self-selected, so we have data from P(X, Y, Z|S = 1)

Question: Can we use the estimated model $\hat{\mathbb{E}}[Y|X, S = 1]$ for population screening?

We have data:

- X: Demographic and medical information, available through digital medical record (age, use of contraceptives, STDs, etc.)
- Y: Presence of cervical cancer
- Z: Symptoms
- Patients are self-selected, so we have data from P(X, Y, Z|S = 1)

Question: Can we use the estimated model $\hat{\mathbb{E}}[Y|X, S = 1]$ for population screening?

Answer: Depends on the selection mechanism...

We have data:

- X: Demographic and medical information, available through digital medical record (age, use of contraceptives, STDs, etc.)
- Y: Presence of cervical cancer
- Z: Symptoms
- Patients are self-selected, so we have data from P(X, Y, Z|S = 1)

Question: Can we use the estimated model $\hat{\mathbb{E}}[Y|X, S = 1]$ for population screening?

Answer: Depends on the selection mechanism...

We have data:

- X: Demographic and medical information, available through digital medical record (age, use of contraceptives, STDs, etc.)
- Y: Presence of cervical cancer
- Z: Symptoms
- Patients are self-selected, so we have data from P(X, Y, Z|S = 1)

Question: Can we use the estimated model $\hat{\mathbb{E}}[Y|X, S = 1]$ for population screening?

Answer: Depends on the selection mechanism...

... so no...

We have data:

- X: Demographic and medical information, available through digital medical record (age, use of contraceptives, STDs, etc.)
- Y: Presence of cervical cancer
- Z: Symptoms
- Patients are self-selected, so we have data from P(X, Y, Z|S = 1)

Question: Can we use the estimated model $\hat{\mathbb{E}}[Y|X, S = 1]$ for population screening?

Answer: Depends on the selection mechanism...

... so no... ...but if we additionally have data from $\mathbb{P}(X, Z)$, then we can estimate $\mathbb{E}[Y|X]$ with repeated regression!

When estimating $\mathbb{E}[Y|X]$ from a dataset with selection bias:

- It is generally not testable whether we have to correct for bias
- Can motivate this by modelling the causal graph of the DGP
- Ignorable: Y \LL S | X, then no correction is necessary.
 Watch out for positivity violations!
- ▶ Nonignorable: $Y \not\parallel S \mid X$, naive regression is biased, but
 - ▶ Privilegedly ignorable: $Y \perp S \mid X, Z$ and unbiased sample $\mathbb{P}(X, Z)$, then we can apply the repeated regression procedure

Missing response (selective labelling)

Example: selective labelling (the bank loan problem)

- ► X: digital data in loan application
- ► Y: default
- \hat{Y} : estimated probability of default
- Z: information from interview
- ► S: issue of the loan

$$\mathsf{Goal:} \ \mathsf{re-train} \ \hat{Y} = \hat{\mathbb{E}}[Y|X]$$

Available data: missing response

X	Ζ	S	Y	-
<i>x</i> ₁	<i>z</i> ₁	1	<i>y</i> ₁	-
÷				$\mathbb{P}(X,Y,Z S=1)$
x _m	z _m	1	Уm	
x_{m+1}	z_{m+1}	0	y_{m+1}	1
÷				
x _n	z _n	0	Уn	
$\mathbb{P}(\mathcal{I})$	X, Z, S)			-

Available data: missing reponse vs. selection bias

Example: selective labelling (automated hiring)

- ► X: job application (cv, letter)
- ► Y: successful hire (binary)
- \hat{Y} : estimated probability of success
- ► Z: psychological test

► S: hire

Exercise (work in pairs)

Hypothesize a setting in which we have

- covariates X
- ► target variable Y
- prediction $\hat{Y} = \hat{\mathbb{E}}[Y|X]$
- privileged information Z
- selection indicator S;

draw a causal graph G of this setting, and check that it satisfies

- $\blacktriangleright X \not\perp_G Y$
- $\triangleright Y \not\perp_G S \mid X$
- $\blacktriangleright Y \perp_G S \mid X, Z.$

BREAK

Example: selective labelling (automated hiring)

- ► X: job application (cv, letter)
- ► Y: successful hire (binary)
- \hat{Y} : estimated probability of success
- ► Z: psychological test

► S: hire

Goal: re-train
$$\hat{Y} = \hat{\mathbb{E}}[Y|X]$$

We have $Y \not \perp S \mid X$, so $\mathbb{E}[Y \mid X, S = 1] \neq \mathbb{E}[Y \mid X]$, but $Y \perp S \mid X, Z$, so...

X	Ζ	S	Y	
<i>x</i> ₁	<i>z</i> 1	1	<i>y</i> 1	$\mathbb{P}(X, Y, Z S = 1)$
÷				
x _m	Z _m	1	Уm	
x_{m+1}	z_{m+1}	0	y_{m+1}	
÷				
x _n	Zn	0	Уn	
$\mathbb{P}(\lambda)$	X, Z, S)			

X	Ζ	S	Y	-
<i>x</i> ₁	<i>z</i> 1	1	<i>y</i> 1	$\mathbb{P}(X,Y,Z S=1)$
:				$\implies \hat{\mathbb{E}}[Y X, Z, S = 1]$
x _m	z _m	1	Уm	
x_{m+1}	z_{m+1}	0	y_{m+1}	-
÷				
x _n	Zn	0	Уn	
$\mathbb{P}(.$	X, Z, S)			-

Y	7	ç	V	Ñ	-
~	Ζ	3	1	,	-
x_1	<i>z</i> 1	1	<i>Y</i> 1	\widetilde{y}_1	$\mathbb{P}(X,Y,Z S=1)$
÷					$\implies \hat{\mathbb{E}}[Y X, Z, S = 1]$
x _m	z _m	1	Уm	<i></i> у _т	
x_{m+1}	z_{m+1}	0	y_{m+1}	\tilde{y}_{m+1}	-
÷					
x _n	Zn	0	Уn	<i>у</i> п	
	$\mathbb{P}(X$	-			

X	Ζ	S	Y	Ŷ	-
<i>x</i> ₁	<i>z</i> 1	1	<i>y</i> 1	\widetilde{y}_1	$\mathbb{P}(X,Y,Z S=1)$
÷					$\implies \hat{\mathbb{E}}[Y X, Z, S = 1]$
x _m	z _m	1	Ут	<i></i> у _т	_
x_{m+1}	z_{m+1}	0	y_{m+1}	\widetilde{y}_{m+1}	_
÷					
x _n	Zn	0	Уn	Уп	_
	$\mathbb{P}(X$	-			
	\implies				

A taxonomy of missingness mechanisms¹⁰

For estimating $\mathbb{E}[Y|X]$ from $\mathbb{P}(X, Y|S = 1)$, selection is:

lgnorable (MAR) ⁸	Nonignorable (MNAR)	Privilegedly ignorable (PMAR) ⁹
$Y \perp \!\!\!\perp S X$	$Y \not \perp S X$	$Y \perp S X, Z$
$X] = \mathbb{E}[Y X, S = 1]$	$\mathbb{E}[Y X] eq \mathbb{E}[Y X, S = 1]$	$\mathbb{E}[Y X] = \mathbb{E}[\mathbb{E}[Y X, Z, S = 1] X]$
$(X) \rightarrow (Y)$	$\begin{array}{c} X \rightarrow Y \\ \downarrow \\ S \end{array}$	$(X \rightarrow Y)$

⁹Robins and Rotnitzky [1995]
 ⁹Boeken et al. [2023]
 ¹⁰Rubin [1976]

 $\mathbb{E}[Y]$

(S)◄

(Z)

Empirical risk minimization:

Assuming e.g. a parametric model $\mathbb{E}[Y|X] = g(X; \beta)$, given data $(X_1, Y_1), ..., (X_n, Y_n) \sim \mathbb{P}(X, Y)$ estimate

$$\hat{\beta} := \operatorname*{arg\,min}_{\beta} \hat{\mathbb{E}}[\ell(X,Y)] = \operatorname*{arg\,min}_{\beta} \frac{1}{n} \sum_{i=1}^{n} \ell(g(X_i;\beta),Y_i)$$

and use $\hat{\mathbb{E}}[Y|X = x] = g(x; \hat{\beta}).$

Assuming PMAR we have $Y \perp S \mid X, Z$, so

¹¹Horvitz and Thompson [1952], inverse probability weighting, inverse propensity weighting

Weighted regression¹¹

Assuming PMAR we have $Y \perp S \mid X, Z$, so

$$\begin{split} \mathbb{E}[\ell(X,Y)] &= \int \ell(x,y)p(x,y,z)\mathrm{d}x\mathrm{d}y\mathrm{d}z\\ &= \int \ell(x,y)\frac{p(x,y,z|S=1)}{p(x,y,z|S=1)}p(x,y,z|S=1)\mathrm{d}x\mathrm{d}y\mathrm{d}z\\ &= \int \ell(x,y)\frac{p(S=1)}{p(S=1|x,y,z)}p(x,y,z|S=1)\mathrm{d}x\mathrm{d}y\mathrm{d}z\\ &= \int \ell(x,y)\frac{p(S=1)}{p(S=1|x,z)}p(x,y,z|S=1)\mathrm{d}x\mathrm{d}y\mathrm{d}z\\ &= \mathbb{E}[w(X,Z)\ell(x,y)|S=1] \end{split}$$

$$w(X,Z) = \mathbb{P}(S=1)/\mathbb{P}(S=1|X,Z)$$

Assuming PMAR we have $Y \perp S \mid X, Z$, so

$$\mathbb{E}[\ell(X,Y)] = \mathbb{E}[w(X,Z)\ell(x,y)|S=1] \ w(X,Z) = \mathbb{P}(S=1)/\mathbb{P}(S=1|X,Z)$$

¹¹Horvitz and Thompson [1952], inverse probability weighting, inverse propensity weighting

Assuming PMAR we have $Y \perp \!\!\!\perp S \mid X, Z$, so

$$\mathbb{E}[\ell(X, Y)] = \mathbb{E}[w(X, Z)\ell(x, y)|S = 1]$$
$$w(X, Z) = \mathbb{P}(S = 1)/\mathbb{P}(S = 1|X, Z)$$

Given data $(X_1, Y_1, Z_1), ..., (X_n, Y_n, Z_n) \sim \mathbb{P}(X, Y, Z | S = 1)$ estimate

$$\hat{eta} := rgmin_eta \min_eta \sum_{i=1}^n w(X_i, Z_i) \ell(g(X_i; eta), Y_i)$$

and use $\hat{\mathbb{E}}[Y|X = x] = g(x; \hat{\beta}).$

¹¹Horvitz and Thompson [1952], inverse probability weighting, inverse propensity weighting

$$X = \varepsilon_X$$

$$Z = 3\sin(X) + \varepsilon_Z$$

$$Y = \frac{1}{2}X + Z + \varepsilon_Y$$

$$S \sim \text{Bernoulli}(p_S(X, Z))$$

Simulated example: weighted regression

 $Y \perp \!\!\!\perp S \mid X, Z$, so

$$\mathbb{E}[\ell(X, Y)] = \mathbb{E}[w(X, Z)\ell(X, Y)|S = 1]$$

$$w(X, Z) = \mathbb{P}(S = 1)/\mathbb{P}(S = 1|X, Z)$$

Simulated example: weighted regression

 $Y \perp\!\!\!\perp S \mid X, Z$, so

$$\mathbb{E}[\ell(X,Y)] = \mathbb{E}[w(X,Z)\ell(X,Y)|S=1]$$

 $w(X,Z) = \mathbb{P}(S=1)/\mathbb{P}(S=1|X,Z)$

Assuming e.g. a parametric model $\mathbb{E}[Y|X] = g(X; \beta)$, estimate

$$\hat{\beta} := \operatorname*{arg\,min}_{\beta} \sum_{i=1}^{n} w(X_i, Z_i) \ell(g(X_i; \beta), Y_i)$$

and use $\hat{\mathbb{E}}[Y|X = x] = g(x; \hat{\beta}).$

Simulated example: comparing methods

$$X = \varepsilon_X$$

$$Z = 3\sin(X) + \varepsilon_Z$$

$$Y = \frac{1}{2}X + Z + \varepsilon_Y$$

$$S \sim \text{Bernoulli}(p_S(X, Z))$$

Summary

When estimating $\mathbb{E}[Y|X]$ from a dataset with selection bias:

- It is generally not testable whether we have to correct for bias
- Can motivate this by modelling the causal graph of the DGP
- Ignorable: Y ⊥ S | X, then no correction is necessary. Watch out for positivity violations!
- - ▶ Privilegedly ignorable: $Y \perp S \mid X, Z$ and unbiased sample $\mathbb{P}(X, Z)$, then we can apply the repeated regression procedure

Missingness response / selective labelling:

- Example: prediction models used for selective labelling
- ► Same characterisation of the regression problem under different missingness mechanisms
- ► Characterisation not testable, but can be motivated with causal model.
- Repeated regression can also be applied for re-training
- Importance weighting as an alternative estimation method

Before deploying an ML model, pay attention to any mismatch between your train and test set.

Causal modelling is a convenient tool for characterising such differences!

Repeated regression and importance weighting can be used for estimating a regression model from biased data.

- E. Bareinboim, J. Tian, and J. Pearl. Recovering from Selection Bias in Causal and Statistical Inference. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 28, page 12, 2014.
- P. Boeken, N. de Kroon, M. de Jong, J. M. Mooij, and O. Zoeter. Correcting for Selection Bias and Missing Response in Regression using Privileged Information. In *Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence (To appear)*. PMLR, 2023.
- M. Hernán and J. M. Robins. *Causal Inference*. Chapman & Hall/CRC Monographs on Statistics & Applied Probability. Chapman & Hall/CRC, Boca Raton, 2021. ISBN 978-1-4200-7616-5.
- D. G. Horvitz and D. J. Thompson. A Generalization of Sampling Without Replacement From a Finite Universe. Journal of the American Statistical Association, 47(260):663-685, 1952. ISSN 0162-1459. doi: 10.2307/2280784. URL https://www.jstor.org/stable/2280784.
- J. M. Robins and A. Rotnitzky. Semiparametric Efficiency in Multivariate Regression Models with Missing Data. Journal of the American Statistical Association, 90(429):122–129, 1995. ISSN 0162-1459. doi: 10.2307/2291135. URL https://www.jstor.org/stable/2291135.

References II

- D. B. Rubin. Inference and Missing Data. *Biometrika*, 63(3):581–592, 1976. ISSN 0006-3444. doi: 10.2307/2335739. URL https://www.jstor.org/stable/2335739.
- V. Vapnik and R. Izmailov. Learning Using Privileged Information: Similarity Control and Knowledge Transfer. Journal of Machine Learning Research, 16(61):2023–2049, 2015. ISSN 1533-7928. URL http://jmlr.org/papers/v16/vapnik15b.html.
- V. Vapnik and A. Vashist. A new learning paradigm: Learning using privileged information. Neural Networks, 22(5):544-557, July 2009. ISSN 0893-6080. doi: 10.1016/j.neunet.2009.06.042. URL https://www.sciencedirect.com/science/article/pii/S0893608009001130.
- Wei Fan, I. Davidson, B. Zadrozny, and Philip S. Yu. An Improved Categorization of Classifier's Sensitivity on Sample Selection Bias. In *Fifth IEEE International Conference on Data Mining* (*ICDM'05*), pages 605–608, Houston, TX, USA, 2005. IEEE. ISBN 978-0-7695-2278-4. doi: 10.1109/ICDM.2005.24. URL http://ieeexplore.ieee.org/document/1565737/.
- B. Zadrozny. Learning and evaluating classifiers under sample selection bias. In *Proceedings of the twenty-first international conference on Machine learning*, page 114, 2004.