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Motivation

Most problems in nature have several (possibly conflicting)
objectives to be satisfied (e.g., design a bridge for which want
to minimize its weight and cost while maximizing its safety).
Many of these problems are frequently treated as
single-objective optimization problems by transforming all but
one objective into constraints.
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Formal Definition

Find the vector ~x∗ =
[
x∗1 , x

∗
2 , . . . , x

∗
n
]T which will satisfy the m

inequality constraints:

gi(~x) ≤ 0 i = 1,2, . . . ,m (1)

the p equality constraints

hi(~x) = 0 i = 1,2, . . . ,p (2)

and will optimize the vector function

~f (~x) = [f1(~x), f2(~x), . . . , fk (~x)]
T (3)
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Basic Concepts

In order to know how “good” a certain solution is, it is
necessary to have some criteria to evaluate it. These criteria
are expressed as computable functions of the decision
variables, that are called objective functions.

In real-world problems, some of these objective functions are in
conflict with others, and some have to be minimized while
others are maximized. These objective functions may be
commensurable (measured in the same units) or
non-commensurable (measured in different units).
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Basic Concepts

In Operations Research, it is a common practice to differentiate
among attributes, criteria, objectives and goals.

Attributes are often thought of as differentiating aspects,
properties or characteristics of alternatives or consequences.
Criteria generally denote evaluative measures, dimensions or
scales against which alternatives may be gauged in a value or
worth sense. Objectives are sometimes viewed in the same
way, but may also denote specific desired levels of attainment
or vague ideals. Goals usually indicate either of the latter
notions. A distinction commonly made in Operations Research
is to use the term goal to designate potentially attainable levels,
and objective to designate unattainable ideals.
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Basic Concepts

Several researchers use the terms objective, criteria, and
attribute interchangeably to represent an MOP’s goals or
objectives (i.e., distinct mathematical functions) to be achieved.
The terms objective space or objective function space are
also used to denote the coordinate space within which vectors
resulting from evaluating an MOP are plotted.
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Basic Concepts

Ideal Objective Vector
It is an objective vector minimizing each of the objective
functions. The components z∗i of the ideal objective vector
z∗ ∈ Rk are obtained by minimizing each of the objective
functions individually, subject to the constraints. That is, it is
obtained by solving:

minimize fi(~x) (4)

subject to ~x ∈ F , for i = 1, . . . , k (5)
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Basic Concepts

Ideal Objective Vector
The ideal vector is unreachable in most cases (except when
there is no conflict among the objectives). However, the ideal
vector is adopted by some mathematical programming
techniques in which normally the idea is to minimize the
distance of a solution with respect to such ideal vector.

Generating the ideal vector is not particularly complicated
(except when some (or all) of the objective functions, when
considered in isolation, presents multimodality). However, its
generation has an additional computational cost that is not
always affordable. Some multi-objective metaheuristics adopt
an approximation of the ideal vector that is updated at each
iteration.
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Basic Concepts

Utopian Objective Vector
Some authors (e.g., Miettinen [1999]) also consider the concept
of utopian objective vector.

The utopian objective vector is defined as: z∗∗ ∈ Rk and it is an
infeasible objective vector whose components are formed by:

z∗∗ = z∗i − εi (6)

for every i = 1, . . . , k , where z∗i is a component of the ideal
objective vector and εi > 0 is a scalar which is relatively small,
but computationally significant. Clearly, the utopian objective
vector is strictly better (i.e., it strictly dominates) every Pareto
optimal solution.
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Basic Concepts

Nadir Objective Vector
It refers to the upper bounds of the Pareto optimal set. It is
normally denoted as znad and its components are normally
quite difficult to obtain.

When computing the ideal vector, normally a payoff table is
created using the decision vectors obtained. Row i of the payoff
table displays the values of all the objective functions calculated
at the point where fi obtained its minimal value. Hence, z∗i is at
the main diagonal of the table. The maximal value of the
column i in the payoff table can be selected as an estimate of
the upper bound of the objective fi for i = 1, . . . , k over the
Pareto optimal set.
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Basic Concepts

In this figure, a black circle is used to indicate the Ideal
Objective Vectors and a gray circle is use to indicate the Nadir
Objective Vectors. It is worth noting that the Nadir Objective
Vector may be infeasible.
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Basic Concepts

This figure shows the Ideal Objective Vector (z∗), the Utopian
Objective Vector (z∗∗) and the Nadir Objective Vector (znad ).
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Basic Concepts

In multiobjective optimization problems, there are three
possible situations:

Minimize all the objective functions
Maximize all the objective functions
Minimize some and maximize others

For simplicity reasons, normally all the functions are converted
to a maximization or minimization form. For example, the
following identity may be used to convert all the functions which
are to be maximized into a form which allows their minimization:

max fi(~x) = min(−fi(~x)) (7)

Carlos A. Coello Coello Multi-Objective Optimization



Basic Concepts

Having several objective functions, the notion of “optimum”
changes, because in MOPs, the aim is to find good
compromises (or “trade-offs”) rather than a single solution as in
global optimization.

The notion of “optimum” that is most commonly adopted is that
originally proposed by Francis Ysidro Edgeworth (in 1881) in
his book entitled Mathematical Psychics.
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Basic Concepts

This notion was generalized by the italian economist Vilfredo
Pareto (in 1896) in his book Cours d’Economie Politique.
Although some authors call Edgeworth-Pareto optimum to this
notion (originally called ophelimity) it is normally preferred to
use the most commonly accepted term: Pareto optimum.
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Basic Concepts

Pareto Optimality

We say that a vector of decision variables ~x∗ ∈ F is Pareto
optimal if there does not exist another ~x ∈ F such that
fi(~x) ≤ fi(~x∗) for all i = 1, . . . , k and fj(~x) < fj(~x∗) for at least
one j (assuming that all the objectives are being minimized).

Other important definitions

In words, this definition says that ~x∗ is Pareto optimal if there
exists no feasible vector of decision variables ~x ∈ F which
would decrease some criterion without causing a simultaneous
increase in at least one other criterion. This concept normally
produces a set of solutions called the Pareto optimal set. The
vectors ~x∗ corresponding to the solutions included in the Pareto
optimal set are called nondominated. The image of the Pareto
optimal set is called the Pareto front.
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Basic Concepts

Pareto Dominance
A vector ~u = (u1, . . . ,uk ) is said to dominate ~v = (v1, . . . , vk )
(denoted by ~u � ~v ) if and only if u is partially less than v , i.e.,
∀i ∈ {1, . . . , k}, ui ≤ vi ∧ ∃i ∈ {1, . . . , k} : ui < vi .

Pareto Optimal Set

For a given MOP ~f (x), the Pareto optimal set (P∗) is defined as:

P∗ := {x ∈ F | ¬∃ x ′ ∈ F ~f (x ′) � ~f (x)}. (8)

Pareto Front

For a given MOP ~f (x) and Pareto optimal set P∗, the Pareto
front (PF∗) is defined as:

PF∗ := {~u = ~f = (f1(x), . . . , fk (x)) | x ∈ P∗}. (9)

Carlos A. Coello Coello Multi-Objective Optimization



Basic Concepts

The concept of Pareto dominance implies that, for a solution
to dominate another one, it should not be worse in any
objective and must be strictly better in at least one of them.

Consequently, when comparing two solutions A and B, using
Pareto dominance, there are three possible outcomes:

1 A dominates B.
2 A is dominated by B.
3 A and B are not dominated by each other (i.e., they are

both non-dominated).
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Basic Concepts

Properties of the dominance relation
Cormen et al. [1990] provide the properties of the dominance
relation:

Reflection: The dominance relation is not reflexive,
because any relation p does not dominate itself.
Symmetry: The dominance relation is not symmetric
because p � q does not imply q � p. In fact, the opposite
is true. In other words, if p dominates q, then q does not
dominate p. Therefore, the dominance relation is
asymmetric.
Antisymmetry: Since the dominance relation is not
symmetric, it can’t be antisymmetric.
Transitivity: The dominance relation is transitive. This is
because if p � q and q � r , then p � r .
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Basic Concepts

Properties of the dominance relation
Another interesting property of the dominance relation is that if
a solution p does not dominate another solution q, this does not
imply that q dominates p.

For a binary relation to qualify as an order relation, it must be at
least transitive [Chankong & Haimes, 1983]. Thus, the
dominance relation is an order relation. However, since the
dominance relation is not reflexive, it is a strict partial order.
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Basic Concepts

Properties of the dominance relation
In general, if a relation is reflexive, antisymmetric and transitive,
it is called (in a general sense) a partial order. A set in which a
partial order is defined is called partially ordered set.

However, it is important to emphasize that the dominance
relation is not reflexive and is not antisymmetric. Therefore, the
dominance relation is not a partial order, but only a strict partial
order.

Carlos A. Coello Coello Multi-Objective Optimization



Basic Concepts

Weak Pareto Optimality

A point ~x∗ ∈ F is a weakly Pareto optimal solution if there is
no ~x ∈ F such that fi(~x) < fi(~x∗), for i = 1, . . . , k .

Strong Pareto Optimality

A point ~x∗ ∈ F is a strongly Pareto optimal solution if there is
~x ∈ F such that fi(~x) ≤ fi(~x∗), for i = 1, . . . , k .
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Basic Concepts

Pareto Front

For a given multi-objective optimization problem ~f (x) and a
Pareto optimal set P∗, the Pareto Front (PF∗) is defined as:

PF∗ := {~u = ~f = (f1(x), . . . , fk (x)) | x ∈ P∗}. (10)
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Basic Concepts

Pareto Front
In general, it is impossible to find an analytical expression that
represents the line or hyper-surface corresponding to the
Pareto Optimal Front. This is possible only in very simple
(textbook) cases.

The normal procedure for generating (an approximation of) the
Pareto optimal front of a problem is to compute all the (or as
many as possible) feasible points and to obtain their
corresponding objective function values. When we had
obtained a sufficient number of such points, it is possible to
determine which are the nondominated solutions from them
(the Pareto optimal set). As indicated before, the image of the
Pareto optimal set is the Pareto front.
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Basic Concepts

Algorithm 1 to Obtain Nondominated Solutions (Simple Method)

Algorithm
Step 1: Set a counter i = 1 and create a (empty) set of

nondominated solutions P ′

Step 2: For a solution j ∈ P, where P is the population
(j 6= i), check if the solution j dominates solution i .
If it dominates it, go to Step 4.

Step 3: If there are more solutions left in P, increase j by
one and go to Step 2; otherewise, P ′ = P ′ ∪ {i}

Step 4: Increase i by one. If i ≤ N, go to Step 2; otherwise,
stop and declare P as the nondominated set.
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Basic Concepts

Algorithm 2 to Obtain Nondominated Solutions (Continuous
Update)
Algorithm
Step 1: Initialize P′ = {1}. Set a counter i = 2.
Step 2: Set j = 1.
Step 3: Compare solutions i and j from P′.
Step 4: If i dominates j , then delete the j th member of P′.

If j < |P′|, then increase j by one and go to Step 3.
Otherwise, go to Step 5.
Else if the j th member of P′ dominates i ,
increase i by one and go to Step 2.
Alternatively, if the j th member of P′ and i are mutually
nondominated, then increase j by one if j < |P′| and go to step 3;
else go to step 5.

Step 5: Insert i in P′. If i < N, increase i by one and
go to Step 2.
Otherwise, stop and declare P′ as the nondominated
set.
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Basic Concepts

Computational Efficiency
Both Algorithm 1 and Algorithm 2 shown before have an
algoritmic complexity O(MN2) in the worst case. In this case M
is the number of objectives and N is the number of solutions.
However, in practice, Algorithm 2 requires about half of the
computational effort required by Algorithm 1.

So the obvious question is: can we obtain nondominated
solutions in a more efficient way (computational
speaking)?
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Basic Concepts

Algorithm 3 to Obtain Nondominated Solutions
Theoretically, the most efficient algorithm that we can have for
obtaining nondominated solutions is the one proposed by Kung
et al. [1975]. This algorithm requires the set (or population) to
be sorted based on the first objective. Then, the population is
recursively divided in two halves: (S) superior and (I) inferior.
Knowing that the first half is better than the second in terms of
the first objective function, the inferior half is checked (in terms
of Pareto dominance) with respect to the superior half.
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Basic Concepts

Algorithm 3 to Obtain Nondominated Solutions
The solutions of (I) which are not dominated by any member of
(S) are combined with the members of (S) to form a mixed
population M. This union and dominance checking starts with
the most inner case (in which there is only one member either
in S or in I, after performing several recursive divisions of the
population) and then the algorithm continues in a bottom up
manner.
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Basic Concepts

Algorithm 3 to Obtain Nondominated Solutions

This algorithm has a complexity O(N(log M)M−2) for M ≥ 4 and
O(N log N) for M = 2 y M = 3.

So, as we increase the number of objectives, Algorithm 3 also
approximates the quadratic complexity of Algorithm 1 and
Algorithm 2. However, for 2 or 3 objectives, this algorithm is
clearly more efficient.
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Basic Concepts

For more on Kung’s Algorithm

H.T. Kung, F. Luccio, and F.P. Preparata, “On finding the
maxima of a set of vectors”, Journal of the Association for
Computing Machinery, 22(4):469–476, 1975.

For more information on this topic
J.L. Bentley, H.T. Kung, M. Schkolnick, and C.D.
Thompson, “On the Average Number of Maxima in a Set
of Vectors and Applications”, Journal of the Association
for Computing Machinery, 25(4):536–543, October 1978.
Jon Louis Bentley, “Multidimensional
Divide-and-Conquer”, Communications of the ACM,
23(4):214–229, April 1980.
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Basic Concepts

For more information on this topic
Jon L. Bentley, Kenneth L. Clarkson, and David B. Levine,
Fast Linear Expected-Time Algorithms for Computing
Maxima and Convex Hulls”, Algorithmica, 9:168–183,
1993.
Lixin Ding, Sanyou Zheng, and Lishan Kang, “A Fast
Algorithm on Finding the Non-dominated Set in
Multi-objective Optimization”, in Proceedings of the 2003
Congress on Evolutionary Computation (CEC’2003),
Vol. 4, pp 2565–2571, IEEE Press, Canberra, Australia,
December 2003.
Michael A. Yukish, Algorithms to Identify Pareto Points
in Multi-Dimensional Data Sets, PhD thesis, College of
Engineering, Pennsylvania State University, USA, August
2004.
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Basic Concepts

For more information on this topic
Parke Godfrey, Ryan Shipley, and Jarek Gryz, “Maximal
Vector Computation in Large Data Sets”, Technical
Report CS-2004-06, Department of Computer Science and
Engineering, York University, Canada, December 2004.
K.K. Mishra and Sandeep Harit, “A Fast Algorithm for
Finding the Non Dominated Set in Multiobjective
Optimization”, International Journal of Computer
Applications, 1(25):35–39, 2010.
Maxim Buzdalov and Anatoly Shalyto, “A Provably
Asymptotically Fast Version of the Generalized Jensen
Algorithm for Non-dominated Sorting”, in Thomas
Bartz-Beielstein et al. (Eds), Parallel Problem Solving from
Nature - PPSN XIII, 13th International Conference, pp.
528–537. Springer. Lecture Notes in Computer Science
Vol. 8672, Ljubljana, Slovenia, September 13-17 2014.

Carlos A. Coello Coello Multi-Objective Optimization



Basic Concepts

For more information on this topic
Xingyi Zhang, Ye Tian, Ran Cheng and Jin Yaochu, “An
Efficient Approach to Nondominated Sorting for
Evolutionary Multiobjective Optimization”, IEEE
Transactions on Evolutionary Computation, Vol. 19, No. 2,
pp. 201–213, April 2015.
Martin Drozdik, Youhei Akimoto, Hernan Aguirre and
Kiyoshi Tanaka, “Computational Cost Reduction of
Nondominated Sorting Using the M-Front”, IEEE
Transactions on Evolutionary Computation, Vol. 19, No. 5,
pp. 659–678, October 2015.
Kent McClymont and Ed Keedwell, “Deductive Sort and
Climbing Sort: New Methods for Non-Dominated
Sorting”, Evolutionary Computation, Vol. 20, No. 1, pp.
1–26, Spring 2012.
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Basic Concepts

Optimality Conditions

Fritz-John’s Necessary Condition. A necessary condition for
x∗ to be Pareto optimal is that there exist vectors λ ≥ 0 and
u ≥ 0 (where λ ∈ RM , u ∈ RJ and λ, u 6= 0) such that the
following conditions hold:

1
∑M

m=1 λm∇fm(x∗)−
∑f

j=1 uj∇gj(x∗) = 0
2 ujgj(x∗) = 0 for every j = 1,2, . . . , J.
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Basic Concepts

Optimality Conditions
These conditions are very similar to the Kuhn-Tucker conditions
of optimality for single-objective problems. The difference lies
on the addition (in this case) of the vector of the gradients of the
objectives.

For an unconstrained multi-objective optimization problem, the
previous theorem requires the following condition:

M∑
m=1

λm∇fm(x∗) = 0 (11)

for a solution to be Pareto optimal.
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Basic Concepts

Optimality Conditions
For nonlinear objective functions, it is expected that the partial
derivatives are nonlinear. For a given vector λ, it is possible to
check the non-existence of a Pareto optimal solution using the
previously defined conditions.

If the necessary conditions are not satisfied, then there does
not exist a Pareto optimal solution corresponding to the given
vector λ. It is worth noting, however, that since this is a
necessary condition, the existence of a solution that is Pareto
optimal is not guaranteeed. In other words, a solution that
satisfies these conditions is not necessarily Pareto optimal.
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Basic Concepts

Optimality Conditions

Kuhn-Tucker’s Sufficiency Conditions for Pareto
Optimality: Let’s assume that the objective functions are
convex and the constraints are non-convex. Let’s assume that
the objective functions and the constraints are continuously
differentiable in a feasible solution x∗. A sufficient condition for
x∗ to be Pareto optimal is that there exist vectors λ > 0 and
u ≥ 0 (where λ ∈ RM and u ∈ RJ ) such that the following
equations hold:

1
∑M

m=1 λm∇fi(x∗)−
∑J

j=1 uj∇gj(x∗) = 0
2 ujgj(x∗) = 0 for every j = 1,2, . . . , J.
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Basic Concepts

For more information
Kaisa M. Miettinen, Nonlinear Multiobjective Optimization,
Kluwer Academic Publishers, Boston, Massachusetts, 1999.
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Historical Highlights of Multi-Objective Optimization

Multiobjective optimization is an intrinsic part of economic
equilibium theory and, as such, it can be said to have been
founded by Adam Smith in his famous treatise entitled An
Inquiry into the Nature and Causes of the Wealth of
Nations, in 1776.
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Historical Highlights of Multi-Objective Optimization

The concept of general economic equilibrium is normally
attributed to Léon Walras (1834-1910). Within economic
equilibrium theory, the most relevant works (besides those of
Walras) are those from Jevons and Menger on utility theory,
and the work on welfare theory by Edgeworth and Pareto,
spanning the period from 1874 to 1906.
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Historical Highlights of Multi-Objective Optimization

A second area that is considered to be one of the main
precursors of multi-objective optimization is the inception of the
psycological theory of games and the notion of (game) strategy.

Games of chance have a very ancient history. However, Félix
Édouard Justin Émile Borel (1871-1956) is normally considered
as the one who started the psicological theory of games and
the one who introduced the formal definition of strategies that
are based on analyzing the psychology of the opponent.
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Historical Highlights of Multi-Objective Optimization

Game Theory
The so-called game theory can be traced back to a work by
Borel from 1921. However, many historians normally attribute
the origins of game theory to a paper from the famous
hungarian mathematician John von Neumann which was orally
presented in 1926 and published in 1928.
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Historical Highlights of Multi-Objective Optimization

Game Theory
In 1944, John von Neumann and Oskar Morgenstern
mentioned (in their famous book on Game Theory) that they
had found a problem in economics that was a “peculiar and
disconcerting mixture of several problems in conflict with each
other” which could not be solved with the classical optimization
methods known at that time. It remains a mystery why is that
von Neummann did not get interested in this peculiar problem.
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Historical Highlights of Multi-Objective Optimization

In 1951, Tjalling C. Koopmans edited a book entitled Activity
Analysis of Production and Allocation, in which the concept
of efficient vector (which is the same as a nondominated
vector) was used in a meaningful way for the very first time.
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Historical Highlights of Multi-Objective Optimization

Mathematical Foundations
The origins of the mathematical foundations of multi-objective
optimization can be traced back to the period from 1895 to
1906 in which Georg Cantor and Felix Hausdorff established
the foundations of ordered spaces of infinite dimensions.
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Historical Highlights of Multi-Objective Optimization

Mathematical Foundations
Cantor also introduced equivalent classes and established the
first set of sufficiency conditions for the existence of a utility
function.

Hausdorff provided the first example of a complete ordering.
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Historical Highlights of Multi-Objective Optimization

Mathematical Foundations
However, it was the concept of the maximum vector problem
introduced by Harold W. Kuhn and Albert W. Tucker (1951)
which allowed multi-objective optimization to become a
mathematical discipline on its own.
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Historical Highlights of Multi-Objective Optimization

Mathematical Foundations
It is well-known that the now famous conditions of optimality
commonly attributed to Kuhn and Tucker had been previously
stated and proved by W. Karush in an unpublished Masters
thesis in 1939.

Kuhn and Tucker gave credit to Karush, which is the reason
why many books call them Karush-Kuhn-Tucker (KKT)
Conditions.
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Historical Highlights of Multi-Objective Optimization

Mathematical Foundations
Nevertheless, the theory of multi-objective optimization
remained practically unexplored during the 1950s. It was until
the 1960s, in which the mathematical foundations of the area
were consolidated when Leonid Hurwicz generalized Kuhn and
Tucker’s results to topological vector spaces.
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Historical Highlights of Multi-Objective Optimization

Kenneth J. Arrow did some very important pioneering work in
the 1950s using the concept of admissible points and stating
his famous impossibility theorem which relates to multi-criteria
decision making.
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Historical Highlights of Multi-Objective Optimization

Goal Programming
Perhaps the most important outcome from the 1950s was the
development of Goal Programming, which was originally
introduced by Abraham Charnes and William Wager Cooper in
1957. However, Goal Programming became popular in the
1960s.
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Historical Highlights of Multi-Objective Optimization

Applications
The first application of multi-objective optimization outside
economics was done by Koopmans (1951) in production theory.
Later on, Marglin (1967) developed the first applications of
multi-objective optimization in water resources.
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Historical Highlights of Multi-Objective Optimization

Applications
The first engineering application of multi-objective optimization
reported in the literature is a paper published by Lofti Zadeh in
the early 1960s (related to automatic control). However,
multi-objective optimization applications generalized until the
1970s.
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Current State

Currently, there are some 30 mathematical programming
techniques for nonlinear multi-objective optimization. However,
they have several limitations. For example, some of them
require that the objectives (and the constraints) are
differentiable. Other approaches cannot be applied to
disconnected or to non-convex Pareto fronts. Additionally, most
of them generate a single solution per algorithmic execution.
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Current State

This has motivated the use of metaheuristics (particularly,
bio-inspired metaheuristics).

A metaheuristic is a high-level search procedure that applies
some form of rule or set of rules based on some source of
knowledge, in order to explore the search space in a more
efficient way.
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Current State

From the many metaheuristics currently available, one particular class has
become very popular in the last 30 years: bio-inspired metaheuristics.

Bio-inspired metaheuristics use rules that are inspired on some biological
metaphore (e.g., in the case of evolutionary algorithms, the inspiration is
Darwin’s survival of the fittest principle). Most bio-inspired metheuristics are
stochastic search techniques (e.g., evolutionary algorithms, particle swarm
optimization, ant colony optimization, etc.).

Carlos A. Coello Coello Multi-Objective Optimization



Current State

Most bio-inspired metaheuristics operate on a set of solutions (normally
called population) at each iteration. A clever use of this population in
multi-objective optimization, allows the generation of several elements of the
Pareto optimal set in a single algorithmic execution.

Also, bio-inspired metaheuristics require little information about the domain
(e.g., they don’t require derivatives) and are less susceptible to the shape or
continuity of the Pareto front.
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Current State

In spite of their several advantages, bio-inspired metaheuristics also have
some disadvantages. One of them is that they cannot guarantee convergence
to the true Pareto front of a problem in most practical cases. Another one
(which is more relevant in practical applications) is that their computational
cost is normally significantly higher than that of mathematical programming
techniques. This is due to their stochastic nature, which requires sampling
several solutions to find an appropriate search direction. This may be
unaffordable in some applications (e.g., in aeronautical engineering).
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