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Techniques to Maintain Diversity

Diversity
Since the early days of evolutionary computation, researchers
working in this field, realized that evolutionary algorithms tend
to converge to a single solution because of stochastic noise
(digital computers can only provide pseudo-random numbers).
Since then, maintaining diversity in the population of an
evolutionary algorithm has been a fundamental research topic
in evolutionary computation.
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Genetic Drift
Loss of diversity is a pheonomenon that also occurs in nature
and it is called genetic drift.

This problem has been studied for a long time, and several
mechanisms to preserve diversity in the population of an
evolutionary algorithm have been proposed.
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Crowding
Holland [1975] proposed an operator called crowding which
was able to identify situations in which more individuals
dominate a certain ecological niche, since it is precisely in
those cases in which the competition for limited resources
rapidly increases, giving rise to a lower life expectancy and to a
lower birth rate.
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Crowding
De Jong [1975] experimented with Holland’s crowding operator.
For this sake, De Jong used a non-generational genetic
algorithm that worked in the following way: a fraction of the
population (defined by a parameter called generational gap
(GG) was selected using proportional selection, so that it was
subject to crossover and mutation.
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Crowding

After applying crossover and mutation, GG × n individuals were
selected from the population to die (i.e., they were replaced by
the new offpsring). Each offspring finds the individual that it will
replace by taking a random sample of CF individuals in the
population (CF is the so-called crowding factor). Each
offspring replaces the individual which is most similar to it in the
population.
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Crowding

A value of CF = 1 indicates that no crowding will take place. As
the value of CF increases, it is more likely that similar
individuals replace among themselves.

Similarity is measured, in this case, using Hamming distances
of the individual’s genotypes.
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Cavicchio’s Work
Cavicchio [1970] proposed several pre-selection schemes from which one
was oriented to preserve diversity.

Cavicchio’s idea was that if an offspring had a higher fitness than the worst
parent, then this offspring would replace that worst parent.

D.J. Cavicchio, “Adaptive search using simulated evolution”, PhD thesis,
University of Michigan, Ann Arbor, USA, 1970.
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Fitness Sharing
Fitness sharing was originally proposed by Goldberg and Richardson
[1987]. In this case, the population is subdivided into several subpopulations
based on the similarity of the individuals in either of two possible spaces:
phenotypic (i.e., decoded parameters) or genotypic (binary encoding).

D.E. Goldberg and J. Richardson, “Genetic algorithms with sharing for
multimodal function optimization”, in Proceedings of the Second
International Conference on Genetic algorithms and their Application, pp.
41–49, Lawrence Erlbaum Associates Inc., Hillsdale, NJ, USA, 1987.

Carlos A. Coello Coello Multi-Objective Optimization



Techniques to Maintain Diversity

Fitness Sharing
Fitness sharing is defined in the following way:

φ(dij) =

{
1−

(
dij
σsh

)α
, dij < σshare

0, otherwise
(1)

where: α = 1, dij is a metric that indicates the distance between
solutions i and j and σshare is the sharing parameter (or
threshold) that controls the size of the niche.
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Fitness Sharing
Using the sharing parameter, the fitness of an individual i is
modified using:

fsi =
fi∑M

j=1 φ(dij)
(2)

where M is the number of individuals that are located in the
neighborhood of the i th individual.
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Fitness Sharing
Deb & Goldberg [1989] proposed a methodology to compute σshare. In
phenotypic space, they adopt an Euclidean distance in a p-dimensional
space, where p refers to the number of decision variables encoded in the
evolutionary algorithm.

Kalyanmoy Deb and David E. Goldberg, “An investigation of niche and
species formation in genetic function optimization”, in J. David Schaffer,
editor, Proceedings of the Third International Conference on Genetic
Algorithms, pp. 42–50, Morgan Kaufmann Publishers, San Mateo, California,
USA, June 1989.
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In Deb and Goldberg [1989], the value of dij is computed using:

dij =

√√√√ p∑
k=1

(xk,i − xk,j )
2 (3)

where x1,i , x2,i , . . . , xp,i and x1,j , x2,j , . . . , xp,j are the decoded variables.
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Fitness Sharing
In order to estimate the value of σshare, Deb and Goldberg [1989] proposed
the following expression:

σshare =
r

p
√

q
=

√∑p
k=1(xk,max − xk,min)2

p
√

2q
(4)

where r is the volume of a p-dimensional sphere of radius σshare and q is the
number of niches that the evolutionary algorithm pretends to find.
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Fitness Sharing
In genotypic fitness sharing, di is defined as the Hamming
distance between the strings and σshare is the maximum
number of different bits that are allowed between strings to form
separate niches in the population.
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Fitness Sharing
The expression that they suggest to use is:

1
2l

k∑
i=0

(
l
i

)
=

1
q

(5)

where: l is the length of the chromosomic string (in bits), k is
the maximum difference (in bits) allowed between sub-strings
to produce q sub-divisions of the solutions space (in other
words, σshare = k ).
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Fitness Sharing
For large values of l , they suggest to use:

σshare =
1
2

(l + z∗√l) (6)

where: z∗ is the normalized difference (in bits) corresponding to 1
q of the total

probability space.

The value of z∗ can be obtained from a cumulative normal distribution chart.
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Fitness Sharing

The experiments conducted by Deb and Goldberg [1989]
indicated that fitness sharing was better than crowding.

Additionally, these experiments indicated that fitness sharing
worked better in phenotypic space than in genotypic space.

Carlos A. Coello Coello Multi-Objective Optimization



Techniques to Maintain Diversity

Fitness Sharing
Some researchers within evolutionary multi-objective optimization have also
proposed their own techniques to compute σshare.

For example, Fonseca & Fleming [1993] proposed:

N =

∏k
i=1(∆i + σshare)−

∏k
i=1 ∆i

σk
share

, (7)

where N is the population size, ∆i is the difference between the maximum
and minimum objective function values in dimension i and k is the number of
objectives of the problem.
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Deterministic Crowding
It is worth noting, however, that Mahfoud [1992] showed that
the conclusions from Deb and Goldberg [1989] are no longer
correct if a few minor changes are introduced to the crowding
scheme analyzed in their paper.

Carlos A. Coello Coello Multi-Objective Optimization



Techniques to Maintain Diversity

Deterministic Crowding
Mahfoud [1992] proposed a crowding algorithm that tends to minimize the
replacement errors from De Jong’s proposal (which was one of its main
drawbacks).

S.W. Mahfoud, “Crowding and preselection revisited”, in Reinhard Männer
and Bernard Manderick (Editors), Parallel Problem Solving from Nature 2, pp.
27–36, North-Holland, Amsterdam, 1992.
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Deterministic Crowding
This algorithm was called deterministic crowding and its main
feature was that introduces a competition between parents and
offspring that are located in identical niches.

After performing crossover and mutation, each offspring
replaces its nearest parent if the offspring has a better fitness
than its parent.

Samir W. Mahfoud, “Niching Methods for Genetic
Algorithms”, PhD thesis, University of Illinois at
Urbana-Champaign, 1995.

Carlos A. Coello Coello Multi-Objective Optimization



Techniques to Maintain Diversity

Deterministic Crowding
Mahfoud’s algorithm starts by grouping all the elements from
the population into N/2 pairs.

Then, these pairs are recombined and the resulting offspring
are mutated. For each pair of offspring, two sets of
tournaments parent-offspring are possible: (1) parent 1 vs.
offspring 1, (2) parent 2 vs. offspring 2, (3) parent 1 vs.
offspring 2 and (4) parent 2 vs. offspring 1.

Determinitic crowding performs these tournaments in such a
way that the most similar individuals are forced to compete
between themselves.

The algorithmic complexity of deterministic crowding is O(N).

Carlos A. Coello Coello Multi-Objective Optimization



Techniques to Maintain Diversity

Probabilistic Crowding
Mengshoel and Goldberg [2008] proposed a niching technique called
probabilistic crowding.

Ole J. Mengshoel and David E. Goldberg, “The Crowding Approach to
Niching in Genetic Algorithms”, Evolutionary Computation, Vol. 16, No. 3,
pp. 315–354, Fall 2008.
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Probabilistic Crowding
This approach is similar to Mahfoud’s deterministic crowding,
but now, a probabilistic acceptance function is adopted (in the
original approach, the fittest individuals always won the
tournaments).

Mengshoel and Goldberg [2008] showed that this approach
produces more stable sub-populations than those obtained with
deterministic crowding.
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Cedeño [1995] and Harik [1995] proposed algorithms with a similar behavior
as Mahfoud’s approach.

In the case of Cedeño et al. [1995], they suggest the use of phenotypic
crossover and specialized operators to reduce the replacement error of the
technique.

Walter Cedeño, “The Multi-Niche Crowding Genetic Algorithm: Analysis
and Applications”, PhD thesis, University of California at Davis, USA, 1995.
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Restricted Tournament Selection
Harik [1995] proposed an approach called Restricted
Tournament Selection (RTS) for multimodal optimization.

Georges R. Harik, “Finding Multimodal Solutions Using
Restricted Tournament Selection”, in Proceedings of the 6th
International Conference on Genetic Algorithms, pp. 24–31,
Morgan Kaufmann Publishers, San Mateo, California, USA,
1995.
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Restricted Tournament Selection
In this case, two elements from the population are selected
first, and they are recombined and mutated.

After recombination, a random sample of CF individuals are
taken from the population, as in the original crowding algorithm.

Each offspring competes with the nearest individual in the
sample. The winners are inserted into the population. This
procedure is repeated N/2 times.

This algorithm has a complexity O(CF · N) and can vary from
O(N) to O(N2).
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Clearing

Pétrowski [1995] proposed an approach called clearing, which
is similar to fitness sharing, but it’s based on the notion of
limited existing resources in the environment.

In this case, instead of sharing the resources among all the
individuals in a sub-population, they are shared only among the
best of them.

Alain Pétrowski, “A Clearing Procedure as a Niching Method
for Genetic Algorithms”, Proceedings of 1996 IEEE
International Conference on Evolutionary Computation
(ICEC’96), pp. 798–803, IEEE Press, Nagoya, Japan, 1996.

Carlos A. Coello Coello Multi-Objective Optimization



Techniques to Maintain Diversity

Clearing
In practice, this approach preserves the fitness of the k best
individuals (the dominant ones) of the niche and resets the
fitness of the others that belong to the same population (the
dominated ones).
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Clearing
As in fitness sharing, individuals belonging to the same niche
(or sub-population) are penalized if their distance in the search
space is less than a certain similarity threshold σs (this is called
the clearing radius).

This technique can be coupled with an elitist strategy to
preserve the best elements in a niche throughout generations.

This algorithm has a complexity O(qN), where q is the number
of niches mantained during the search process.
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Clustering
Clustering algorithms have also been frequently used to implement niching
approaches.

Yin and Germay [1993] proposed a framework for implementing niches using
clustering algorithms.

A clustering algorithm such as K −Means [Haykin, 1999] first divides the
population into several clusters and then considers the centroids of the
recently partitioned sub-populations.
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Clustering
Let’s make dic denotes the distance between individual i and its centroid, and
that fi denotes the original fitness (raw fitness) of individual i . Let’s assume
that there are nc individuals in the same niche of individual i . Its fitness is
then defined as:

f Clustering
i =

fi
nc · (1− (dic/2dmax )α

(8)

where dmax is the maximum distance allowed between an individual and the
centroid of its niche, and α is a user-defined parameter.

Xiaodong Yin and Noël Germay, “A fast genetic algorithm with sharing
scheme using cluster analysis methods in multimodal function
optimization”, in R.F. Albrecht, C.R. Reeves and N.C. Steele (Editors),
Proceedings of the International Conference on Artificial Neural Nets and
Genetic Algorithms, p. 450–457, Springer, 1993.
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Thermodynamical Genetic Algorithm
Kita et al. [1996] proposed the Thermodynamical Genetic Algorithm
(TDGA) which adopts Pareto ranking, combined with the principle of minimal
free energy that is adopted in simulated annealing.

Hajime Kita, Yasuyuki Yabumoto, Naoki Mori and Yoshikazu Nishikawa,
“Multi-Objective Optimization by Means of the Thermodynamical
Genetic Algorithm”, in Hans-Michael Voigt et al. (Editors), Parallel Problem
Solving from Nature–PPSN IV, Springer, Lecture Notes in Computer Science,
pp. 504–512, Berlin, Germany, September 1996.
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Thermodynamical Genetic Algorithm

The core idea in the TDGA is to select the individuals of the
next generation in such a way that the free energy is minimized.

The free energy is given by:

F =< E > −HT (9)

where: < E > is the average energy in the system, H is the
entropy and T is the temperature.
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Thermodynamical Genetic Algorithm
Diversity of the population is controlled by adjusting T
according to certain (given) cooling schedule.

According to Kita et al. [1996], T is less sensitive to the
population size and to the size of the feasible region than
traditional fitness sharing functions.
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Emphasis on Efficiency
Over the years, a great emphasis to efficiency has been given
to the research on niching.

For example, Yin and Germay [1993] proposed to alternate the
use of clustering with niching.

They indicated that this sort of scheme would reduce the
algorithmic complexity of the approach from O(n2) to O(nq),
where q is the number of niches.
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Emphasis on Efficiency
It is worth noting, however, that fitness sharing algorithms can
work with an algorithmic complexity O(nq) when the shared
fitness values are sampled from a sub-population of size O(q)
[Oei et al., 1991].
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Dynamic Niching
There have also been proposals of dynamic niching schemes. For example,
Miller and Shaw [1996] proposed the use of a fixed number of dynamic
niches with fixed radii and niche centers. Such values would be determined
through a sorting procedure applied to the entire population.

Brad L. Miller and Michael J. Shaw, “Genetic Algorithms with Dynamic
Niche Sharing for Multimodal Function Optimization”, in Proceedings of
the 1996 IEEE International Conference on Evolutionary Computation
(ICEC’96)”, pp. 786–791, IEEE Press, May 1996.
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Dynamic Niching
For those individuals that are not located within any of these
niches, conventional fitness sharing is applied.

This reduces the computational cost because it is no longer
required to re-compute the niches except when the individuals
cannot be placed in any of the previously defined niches.
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Coevolutionary Niching
Goldberg and Wang [1998] proposed a coevolutionary scheme to maintain
diversity.

This scheme is inspired on a monopolic competition as modelled by
economists. The algorithm uses two populations: one containing business
men and another one containing customers.

These populations are set up in such a way that the location of the business
men corresponds to the locations of the niches and the locations of the
customers corresponds to the solutions.

David E. Goldberg and Liwei Wang, “Adaptive Niching via Coevolutionary
Sharing”, in D. Quagliarella et al. (eds.), Genetic Algorithms and Evolution
Strategies in Engineering and Computer Science. Recent Advances and
Industrial Applications, Chapter 2, pp. 21–38, John Wiley & Sons, Chichester,
UK, 1998.
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Coevolutionary Niching
In this proposal, the location and radii of the niches
automatically adapt to the specific features of the fitness
landscape at the current generation.
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Tagging
Spears [1994] proposed a mechanism called tagging, which aims to improve
the performance of the techniques to maintain diversity that are based on
distances (e.g., fitness sharing) through a labeling system for the individuals.

W.M. Spears, “Simple subpopulation schemes”, in A.V. Sebald and L.J.
Fogel (Editors), Third Annual Conference on Evolutionary Programming,
IEEE Press, pp. 296–307, San Diego, California, USA, 1994.
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Tagging
The idea of this approach is that, instead of computing
distances, labels are adopted to identify the sub-population to
which they belong. This enforces a mating restriction, and gives
rise to a fitness sharing scheme.
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Tagging
This is a very interesting concept, which simplifies the process of classifying
individuals and, evidently, reduces the computational cost.

In the process, this approach constitutes a new bio-inspired technique for
niche formation: under this scheme, individuals belong to a certain species
because their parents were members of that species, and not because they
are adjacent to an individual that is located in the peak of the function being
optimized.
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Multinational Evolutionary Algorithm
Ursem [1999] proposed a complex model for differentiating sub-populations,
which was called multinational evolutionary algorithm.

Rasmus K. Ursem, “Multinational evolutionary algorithms”, in
Proceedings of the 1999 IEEE Congress on Evolutionary Computation
(CEC’99), pp. 1633-1640, IEEE Press, July 1999.
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Multinational Evolutionary Algorithm
This approach considers a world of “nations”, “governments”
and “politicians”, with dynamics dictated by the migration of
individuals, the union of sub-populations and the selection
scheme.

Additionally, it introduces an auxiliary sampling mechanism
based on a topology, which detects if a feasible solution shares
the same attraction point.

Although interesting, the main drawback of this approach is that
it becomes inefficient in high-dimensional problems.
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Elitist Generational Genetic Chromodynamics Algorithm
Stoean et al. [2005] proposed the elitist generational genetic
chromodynamics algorithm, which is a technique based on radii.

The core idea of this approach is to define a mating region (with its
corresponding mating radii, replacing radii and union radii), which dictates the
dynamic of the genetic operators.

Catalin Stoean, Mike Preuss, Ruxandra Gorunescu and D. Dumitrescu,
“Elitist generational genetic chromodynamics - a new radii-based
evolutionary algorithm for multimodal optimization”, in 2005 IEEE
Congress on Evolutionary Computation (CEC’2005), pp. 1839–1846, IEEE
Press, September 2005.
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S-Energy

The s-energy indicator was proposed by Hardin and Saff [2004]
and is defined as follows:

Es(A) =
∑
i 6=j

∥∥~ai − ~aj
∥∥−s (10)

where A = {~a1, . . . , ~a|A|}, ~ai ∈ Rm, and s > 0 is a fixed
parameter. The aim is to minimize its value because it
produces a uniform distribution of points. Normally, s = m
(where m is the number of objectives).

D. P. Hardin and E. B. Saff, “Discretizing Manifolds via Minimum Energy
Points”, Notices of the AMS, Vol. 51, No. 10, pp. 1186–1194, November
2004.
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Moment of Inertia
Morrison and De Jong [2001] proposed a new measure of population
diversity which is based on an extension of the concept of inertia for
measurement of mass distribution into arbitrarily high dimensionality spaces.
Extending into n-space, the coordinates of the centroid of P equally weighted
points in n-space, C = (c1, c2, c3, . . . cn) are computed using:

ci =

∑j=P
j=1 xij

P
(11)

where xij ∈ IR and ci is the i th coordinate of the centroid.
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Moment of Inertia
Continuing with P equally-weighted points in n-space, the moment-of-inertia
based measure of diversity of these points about their centroid is:

I =
i=n∑
i=1

j=P∑
j=1

(xij − ci )
2 (12)

According to its authors, the main advantage of this measure of diversity is
that, in comparison with traditional methods of computing pair-wise
population diversity, which are quadratic on population size (P), this method
is linear in P (it requires a total of 4(nP) + n calculations).

Ronald W. Morrison and Kenneth A. De Jong, “Measurement of Population
Diversity”, in Pierre Collet et al. (Editors) Artificial Evolution, 5th International
Conference, Evolution Artificielle, EA 2001, pp, 31–41, Springer, Lecture
Notes in Computer Science Vol. 2310, Le Creusot, France, October 29-31,
2001.
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Ectropy
Lacevic and Almadi [2011] point out that measures based on the sum
(average) of pairwise distances between points in IRm have substantial
shortcomings. For instance, these measures reach their maximum value
when the population consists of very few (sometimes only two) mutually
distant clusters of collocated points. They propose a notion called ectropy
(which is the opposite from entropy, which can be seen as the measure of
disorder in the population). This concept aims for reaching a near-maximum
value for a population that has many collocated points (e.g., consists of
several clusters of collocated points). This property is clearly in contrast with
the (more intuitive) notion of diversity measure, because the collocation of
points is rewarded instead of being penalized.

Bakir Lacevic and Edoardo Amaldi, “Ectropy of diversity measures for
populations in Euclidean space”, Information Sciences, Vol. 181, No. 11,
pp. 2316–2339, June 2011.
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Mating Restrictions
The idea of using mating restrictions is not new. Goldberg [1989] mentions its
use in single-objective optimization as a means to prevent or to minimize the
appearence of the so-called “lethals” (offspring with a low fitness value).

In other words, mating restrictions bias the way in which individuals mate for
recombination purposes. The aim is to increase the effectiveness and the
efficiency of the evolutionary algorithm.

Goldberg [1989] presents an example using genotypic similarities as a
mating criterion.

David E. Goldberg, “Genetic Algorithms in Search, Optimization and
Machine Learning, Addison-Wesley Publishing Company, Reading,
Massachusetts, USA, 1989.

Carlos A. Coello Coello Multi-Objective Optimization



Techniques to Maintain Diversity

Mating Restrictions
Biologically, mating restrictions are equivalent to geographical isolation, or to
setting up a barrier to restrict the flow of genes. This allows to complete the
speciation stage.

Geographical isolation is a key component of evolution, since it creates the
basic conditions for speciation to occur (i.e., for new species to appear).
Therefore, it should not be surprising that several niching techniques rely on
mating restrictions.
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Mating Restrictions
Goldberg and Deb [1989] suggested the use of mating restriction based on
phenotypic distances.

The idea is to allow that two individuals recombine only if they are very
similar (i.e., if their phenotypic distance is less than a certain user-defined
threshold, called σmate, which is measured with some metric).
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Mating Restrictions
This intends to produce different “species” (mating groups) in the population
[Mitchell, 1996].

Parallel genetic algorithms with an island model also use mating restrictions
which are defined in a geographical sense. In this case, an individual can
only recombine with its neighborhood (i.e., the other individuals in its own
sub-population) according to the interconnection topology.

Melanie Mitchell, An Introduction to Genetic Algorithms, The MIT Press,
Cambridge, Massachusetts, USA, 1996.

Carlos A. Coello Coello Multi-Objective Optimization



Techniques to Maintain Diversity

Mating Restrictions
Some researchers have indicated that mating restrictions should motivate the
recombination of different individuals with the aim of preventing the
generation of “lethals”.

Regardless of the restriction criterion adopted, severam MOEAs incorporate
mating restrictions whose aim is to reduce the number of dominated solutions
in the population (this is the case, for example, of MOGA [Fonseca and
Fleming, 1993]).

Carlos A. Coello Coello Multi-Objective Optimization



Techniques to Maintain Diversity

Mating Restrictions
For example, Baita [1995] and Loughlin & Ranjithan [1997] placed the
solutions in a grid and restrict the area within which individuals can
recombine.

Lis and Eiben [1996] only allow the recombination of individuals that have a
different “gender”.

Jakob et al. [1992] implemented a rather atypical mating restriction
mechanism based on the values of the weights of each solution (they adopt a
linear aggregating function in this case).
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Mating Restrictions
Although in many MOEAs, it is common practice to adopt σmate = σshare, there
are no studies that indicate that this is the most appropriate setting for the
mating threshold.

In fact, most EMOO researchers who adopt mating restrictions don’t normally
justify the incorporation of this sort of mechanism and in most cases, no
empirical evidence of their effectiveness is provided.
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Mating Restrictions
There are, indeed few studies that provide empirical evidence of the
usefulness of mating restrictions in evolutionary multi-objective optimization.

Zitzler and Thiele [1998] showed that, for the different values of σmate with
which they experimented, no actual improvement on the performance of their
MOEA (SPEA) was detected, when solving a certain set of test problems.

In this case, the presence or absence of mating restrictions didn’t produce
any statistically significant difference.

Eckart Zitzler and Lothar Thiele, “Multiobjective Optimization Using
Evolutionary Algorithms–A Comparative Study”, in A.E. Eiben (Ed.),
Parallel Problem Solving from Nature V, Springer-Verlag, pp. 292–301,
Amsterdam, September 1998.
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Mating Restrictions
Shaw and Fleming [1996] reported results similar to those of Zitzler.

Horn et al. [1994] offered empirical evidence that directly contradicts the
foundational principles for using mating restrictions.

K.J. Shaw and P.J. Fleming, “An Initial Study of Practical Multi-Objective
Production Scheduling using Genetic Algorithms, in Proceedings of the
International Conference on Control’96, University of Exeter, UK, September
1996.
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Mating Restrictions
Horn [1994] indicated that recombining solutions whose associated vectors
are in different portions of PFknown(t) can INDEED produce offspring whose
vectors are in PFknown(t + 1).

However, he also indicated that these offspring will be located between their
parents.

Jeffrey Horn, Nicholas Nafpliotis and David E. Goldberg, “A Niched Pareto
Genetic Algorithm for Multiobjective Optimization”, in Proceedings of the
First IEEE Conference on Evolutionary Computation, Vol. 1, pp. 82–87, IEEE
Press, Piscataway, New Jersey, USA, June 1994.
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Mating Restrictions
Horn [1994] also indicates that for a given multi-objective optimization
problem, the constant re-generation of vectors through the recombination of
“dissimilar” parents, maintains solutions in PFknown.

He also claims that most of the recombinations in Pknown produce solutions
that are also in Pknown.
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Mating Restrictions
Based on what we have seen about mating restrictions, we can
conclude that, as in single-objective optimization, it is unclear if
they are at all beneficial.

One would expect this mechanism to be useful in certain
situations, but it is still unclear when.

In any case, mating restriction are another technique to
maintain diversity which, however, is rarely used these days.

Most modern MOEAs don’t adopt any sort of mating restriction
mechanism.
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Many other techniques to maintain diversity exist (see for
example [Mahfoud, 1995], but only a small percentage of them
have been used in the context of evolutionary multi-objective
optimization.

Samir W. Mahfoud, “Niching Methods for Genetic
Algorithms”, PhD thesis, University of Illinois at
Urbana-Champaign, 1995.
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There is no solid evidence regarding the advantages or disadvantages of
some particular technique to maintain diversity over the others in the context
of evolutionary multi-objective optimization.

The information that we have in this regard is fairly limited. For example, we
know that fitness sharing can be used with any number of objectives, unlike
other mechanisms (for example the crowded-comparison operator of
NSGA-II or the adaptive grid from PAES).
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It is also unclear the space in which fitness sharing should be
applied.

Horn et al. [1993] wisely indicated that fitness sharing should
be applied in the space that we “care the most”.

In evolutionary multi-objective optimization, it is very common
to apply it in phenotypic space, since the main concern is
normally a uniform distribution of the Pareto front.

However, in Operations Research, it is common to aim for a
uniform distribution in decision variables space [Benson &
Sayin, 1997].
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For more information on this topic, see:

Ofer M. Shir, Niching in Evolutionary Algorithms, in G. Rozenberg et
al. (Editors), Handbook of Natural Computing, Chapter 32, pp.
1035–1069, Springer-Verlag, Berlin, Germany, 2012.

Bruno Sareni and Laurent Krähenbühl, Fitness Sharing and Niching
Methods Revisited, IEEE Transactions on Evolutionary Computation,
Vol. 2, No. 3, pp. 97–106, September 1998.

N.N. Glibovets and N.M. Gulayeva, “A Review of Niching Genetic
Algorithms for Multimodal Function Optimization”, Cybernetics and
Systems Analysis, Vol. 49, No. 6, pp. 815–820, November 2013.
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Horn [1997] indicates that every implementation of a MOEA should adopt a
secondary population (also called external archive).

A secondary population is required to preserve the nondominated solutions
generated by a MOEA at each iteration. Without it, such solutions could be
lost when we apply the genetic operators to them. Secondary populations are
also required for theoretical reasons (i.e., to guarantee convergence
[Rudolph and Agapie, 2000]).

Jeffrey Horn, “Multicriterion Decision Making, in Thomas Bäck, David
Fogel and Zbigniew Michalewicz (editors), Handbook of Evolutionary
Computation, pp. F1.9:1 - F1.9:15, Vol. 1, IOP Publishing Ltd. and Oxford
University Press, 1997.

Günter Rudolph and Alexandru Agapie, “Convergence Properties of Some
Multi-Objective Evolutionary Algorithms”, in Proceedings of the 2000
IEEE Conference on Evolutionary Computation, Vol. 2, pp. 1010–1016, IEEE
Press, Piscataway, New Jersey, USA, July 2000.
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Nowadays, nobody questions the use of a secondary population in a MOEA.
However, their use raises several issues. For example:

Should the secondary population participate in the selection process of
the MOEA (as done in SPEA)?

What sort of filtering scheme should we use to bound the size of the
secondary population (if the size of the secondary population grows too
much, and it is used in the selection process, then the selection
pressure will quickly dilute)?

Can we use the secondary population as a density estimator?

The reason for which a secondary population is required is because a MOEA
is trying to construct a discrete image of a Pareto front that is probably
continuous. Therefore, it is recommended to keep as many nondominated
solutions as possible, at least at the beginning of the search. This will allow
us to produce Pareto fronts with well-distributed solutions.
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Although early MOEAs used secondary populations that were
implemented as linear lists to store nondominated solutions,
over the years, several researchers have proposed different
types of data structures for this sake.
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For example, Mostaghim et al. [2002] proposed to use quadtrees [Finkel and
Bentley, 1974] in SPEA. This work is based on a paper from Habenicht
[1983] which introduced the use of quadtrees to identify nondominated
solutions. There is also a follow-up of this work, by Sun and Steuer [1996] in
which Habenicht’s algorithm is improved.

Sanaz Mostaghim, Jürgen Teich and Ambrish Tyagi, “Comparison of Data
Structures for Storing Pareto-sets in MOEAs, in 2002 IEEE Congress on
Evolutionary Computation (CEC’2002), Vol. 1, pp. 843–848, IEEE Service
Center, Piscataway, New Jersey, USA, May 2002.
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Mostaghim et al. [2002] compared the arrays (or linear lists) with three types
of quadtrees: quadtree1 (Habenicht’s algorithm [1983]), quadtree2 (a
version proposed by Mostaghim et al. [2002] which uses flags to delete
dominated solutions) and quadtree3 (the algorithm of Sun and Steuer
[1996]).

This study shows that the use of quadtrees is beneficial for archives with at
least 5,000 solutions, because with smaller archive sizes, the use of an array
is much more efficient.

Something interesting is that Mostaghim et al. [2002] report that quadtree1
is the best algorithm from the three used in the comparison for archives with
5,000 or more solutions. This is remarkable if we consider that the other two
algorithms are supposed to be improved versions of this one.
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Fieldsend et al. [2003] indicate that bounding the size of the
external population can produce a “shrinkage” and an
“oscillation” phenomena in the Pareto front approximations that
we produce.

On the other hand, they recognize that the main problem
related to the use of unbounded archives is their high
computational cost.

Thus, they proposed the use of two new data structures (the
nondominated trees and the PQRS trees) for storing and
retrieving solutions from an unbounded archive in an efficient
manner.
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Something interesting is that they also proposed the use of a secondary
population for defining a stopping criterion for a MOEA.

Jonathan E. Fieldsend, Richard M. Everson and Sameer Singh, “Using
Unconstrained Elite Archives for Multiobjective Optimization”, IEEE
Transactions on Evolutionary Computation, Vol. 7, No. 3, pp. 305–323, June
2003.
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Laumanns et al. [2002] proposed a relaxed form of Pareto dominance called
ε-dominance, which is used as an archiving technique that allows to filter out
solutions generated by a MOEA.

The core idea is to define a set of boxes of size ε and to allow only one
solution in each of these boxes (e.g., from the nondominated solutions inside
a box, we only keep the one that is closest to the low lefthand corner).

Marco Laumanns, Lothar Thiele, Kalyanmoy Deb and Eckart Zitzler,
“Combining Convergence and Diversity in Evolutionary Multi-objective
Optimization”, Evolutionary Computation, Vol. 10, No. 3, pp. 263–282, Fall
2002.
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To the left, we can see the area that is dominated by a certain solution. To the
right, we graphically show the concept of ε-dominance. In this case, the
dominated area has been extended in a magnitude that is proportional to the
(user-defined) parameter ε.
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An example of the use of ε-dominance in an external archive. Solution 1
dominates solution 2, and it’s therefore, preferred. Solutions 3 and 4 are
incomparable. However, we prefer solution 3, because it is closer to the lower
lefthand corner. Solution 5 dominates solution 6, so it’s preferred. Solution 7
is not accepted because its box (represented by the point (2ε,3ε) is
dominated by the box represented by the point (2ε,2ε).
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ε-dominance has some limitations, including the following:

1 We can lose a high number of nondominated solutions if the
geometrical shape of the true Pareto front is unknown or is not taken
into consideration by the decision maker.

2 The extreme portions of the Pareto front are normally lost. Additionally,
nondominated points that are located in segments of the Pareto front
that are almost horizontal or almost vertical will also be lost.

3 The upper bound on the number of points allowed in the external
archive may be difficult to reach. For a non-adaptive scheme (i.e., when
ε is kept at a fixed value), this upper bound can only be reached when
the true Pareto front is linear.
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With the aim of addressing these limitations, Hernández-Dı́az et al. [2007]
proposed the so-called Pareto-adaptive ε-dominance.

In this proposal, different ε-dominated regions are considered, depending on
the characteristics of the true Pareto front. In order to obtain such regions,
each Pareto front is associated to a curve from the family:{

xp + yp = 1 : 0 ≤ x , y ≤ 1, 0 < p <∞
}
.

for bi-objective problems, or{
xp + yp + zp = 1 : 0 ≤ x , y , z ≤ 1, 0 < p <∞

}
for problems with three objective functions.

Alfredo G. Hernández-Dı́az, Luis V. Santana-Quintero, Carlos A. Coello
Coello and Julián Molina, “Pareto-Adaptive epsilon-Dominance”,
Evolutionary Computation, Vol. 15, No. 4, pp. 493–517, Winter 2007.
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With this proposal, it is possible to obtain more solutions than when adopting
the original ε-dominance, because the size of the boxes is adjusted based on
the geometrical characteristics of the Pareto front. This scheme also provides
a more uniform distribution of solutions.

Its main drawback is that it requires an initial sampling to estimate the
geometrical shape of the Pareto front (it is worth noticing, however, that this is
also a requirement of the original ε-dominance).
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Schütze et al. [2010] proposed two different archiving strategies for a
stochastic multi-objective optimizer. The authors prove convergence with
probability one to gap free (and thus ‘tight’) Pareto front approximations.

The limit set of the first strategy is a tight ε-approximate Pareto set which
provides a guaranteed uniformity level, while the limit set of the second
strategy forms a tight ε-Pareto set, which, however, lacks the uniformity.

Oliver Schuetze, Marco Laumanns, Emilia Tantar, Carlos A. Coello Coello
and El-Ghazali Talbi, “Computing Gap Free Pareto Front Approximations
with Stochastic Search Algorithms”, Evolutionary Computation, Vol. 18,
No. 1, pp. 65–96, Spring, 2010.
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Knowles and Corne [2003] analyzed three convergent archiving algorithms:

Unbounded archiving

Simple bounded archiving (similar to Rudolph and Agapie [2000]).

S Metric Archiving

These three archiving strategies are able to converge to the true Pareto front
under certain conditions, but are not able to maintain a well-distributed set of
points along the Pareto front.

Joshua Knowles and David Corne, “Properties of an Adaptive Archiving
Algorithm for Storing Nondominated Vectors”, IEEE Transactions on
Evolutionary Computation, Vol. 7, No. 2, pp. 100–116, April 2003.
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Knowles and Corne [2003] proposed the Adaptive Grid Archiving (AGA)
algorithm.

This approach is shown to have a low computational cost, it adapts itself to
the values of points in objective space and maintains a nondominated set
archive which uses “crowding” (not to be confused with NSGA-II’s crowded
comparison operator) to encourage an even distribution of points. This
approach is based on PAES’ archiving method.

For this algorithm, the authors show that, although convergence to a subset
of the true Pareto front is not guaranteed, under certain conditions, the grid
boundaries do converge. When this occurs, certain grid regions will become
constantly occupied, guaranteeing a certain minimum quality of points in the
archive. This also encourages diversity.

Finally, the authors also discuss the conditions under which the AGA’s upper
grid boundaries do not converge, which is basically when the Pareto front has
a small extent than the whole objective space.
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Zapotecas and Coello [2010] proposed the use of the Convex Hull of
Individual Minima (CHIM) for maintaining well-distributed solutions in the
secondary population of a MOEA.

Saúl Zapotecas Martı́nez and Carlos A. Coello Coello, “An Archiving
Strategy Based on the Convex Hull of Individual Minima for MOEAs”, in
2010 IEEE Congress on Evolutionary Computation (CEC’2010), pp.
912–919, IEEE Press, Barcelona, Spain, July 18-23, 2010.
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Zhao and Suganthan [2010] proprosed an ensemble (set) of ε values and an
ensemble of external archives for a MOPSO.

The idea is to avoid performing a pre-sampling for estimating the proper
value of ε.

Shi-Zheng Zhao and Ponnuthurai Nagaratnam Suganthan, “Multi-Objective
Evolutionary Algorithm with Ensemble of External Archives”,
International Journal of Innovative Computing Information and Control, Vol. 6,
No. 4, pp. 1713–1726, April, 2010.
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2002.
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