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México, D.F. 07360, MEXICO

Eindhoven University of Technology
Eindhoven, The Netherlands July 2023

LECTURE 4

Carlos A. Coello Coello Multi-Objective Optimization



Test Problems

Some examples of test suites that have been proposed in the specialized
literature to evaluate single-objective evolutionary algorithms are the
following:

The 5 test problems from De Jong [1975] for unconstrained
optimization.

The 12 test problems from Michalewicz & Schoenauer [1996] for
constrained optimization.

The 62 test problems from Schwefel [1995] for evaluating evolution
strategies.
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Test Problems

The test problems proposed by Whitley et al. [1996] and Goldberg
[1989].

The test problems from Yao & Liu [1996; 1997] used to assess
performance of evolutionary programming and evolution strategies.

The deceptive problems from Goldberg and Mühlenbein.

The 8 test problemas from Digalakis & Margaritis [2000].

The multimodal test problems from Levy [1981], the test problems from
Corana [1987], the test problems from Freudenstein-Roth and the test
problems from Goldstein-Price [1981].

Ackley’s function and Wirestrass’ function [Bäck et al., 1997].
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Test Problems

A set of test problems to evaluate the performance of a MOEA should include
the following features (both in genotypic and in phenotypic space):

Continuous vs. discontinuous vs. discrete

Differentiable vs. non-differentiable

Convex vs. concave

Modality (unimodal, multi-modal)

Numerical vs. alphanumeric

Quadratic vs. nonquadratic

Type of constraints (equalities, inequalities, linear, nonlinear)

Low vs. high dimensionality (genotype, phenotype)

Deceptive vs. nondeceptive

Biased vs. unbiased portions of the true Pareto front
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Test Problems

Test problems should range in difficulty from “easy” to “hard” as well as
attempt to represent generic real-world situations.

Dynamically changing environments can include “moving cones” [Morrison &
de Jong, 1999] with movement ranging from predictable to chaotic to
non-stationary and deceptive.

R.W. Morrison and K.A. de Jong, “A Test Problem Generator for
Non-Stationary Environments”, in 1999 IEEE Congress on Evolutionary
Computation, pp. 2047–2053, IEEE Press, Washington, D.C., USA, 1999.
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Test Problems

One should also consider the following guidelines suggested by Whitley et al.
[1996] in developing generic test suites:

Some test suite problems are resistant to simple search strategies.

Test suites contain nonlinear, unseparable & unsymmetric problems.

Test suites contain scalable problems.

Some test suite problems have scalable evaluation cost.

Test problems have a canonical representation (ease of use).

D. Whitley, K. Mathias, S. Rana and J. Dzubera, “Evaluating Evolutionary
Algorithms”, Artificial Intelligence, 85:245–276, 1996.
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Test Problems

Ideally, test problems used to evaluate a MOEA should contain features and
difficulties similar to those found in the real-world problem(s) that we aim to
solve.

However, the specialized literature presents a wide number of “artificial” test
problems that emphasize certain aspects that are indeed difficult for most
MOEAs, but that don’t necessarily represent the difficulties found in
real-world problems.

Carlos A. Coello Coello Multi-Objective Optimization



Test Problems

Unconstrained Problems
MOP 1: This is the first test problem used by David Schaffer.
Historically, it has a very high relevance, because it was the first
test problem proposed to evaluate the performance of a MOEA.
However, this problem is so simple that its Pareto front can be
obtained in an analytic form. PFtrue is convex and the problem
has a single decision variable.

F = (f1(x), f2(x)), where

f1(x) = x2,

f2(x) = (x − 2)2

where: −105 ≤ x ≤ 105
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Test Problems

Unconstrained Problems
Ptrue of MOP 1
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Test Problems

Unconstrained Problems
PFtrue of MOP 1
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Test Problems

Unconstrained Problems
MOP 2: This is the second test problem proposed by Fonseca.
It is scalable. It is possible to add decision variables to this test
problem without changing the shape of PFtrue (the Pareto front
is concave in this case).

F = (f1(~x), f2(~x)), where

f1(~x) = 1− exp(−
n∑

i=1

(xi −
1√
n
)2),

f2(~x) = 1− exp(−
n∑

i+1

(xi +
1√
n
)2)

where: −4 ≤ xi ≤ 4; i = 1,2,3
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Test Problems

Unconstrained Problems
Ptrue of MOP 2
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Test Problems

Unconstrained Problems
PFtrue of MOP 2
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Test Problems

Unconstrained Problems
MOP 3: Proposed by Carlo Poloni. Both Ptrue and PFtrue are disconnected.

Maximize F = (f1(x , y), f2(x , y)), where

f1(x , y) = −[1 + (A1 − B1)
2 + (A2 − B2)

2],

f2(x , y) = −[(x + 3)2 + (y + 1)2]

where: −3.1416 ≤ x , y ≤ 3.1416,

A1 = 0.5 sin 1− 2 cos 1 + sin 2− 1.5 cos 2,

A2 = 1.5 sin 1− cos 1 + 2 sin 2− 0.5 cos 2,

B1 = 0.5 sin x − 2 cos x + sin y − 1.5 cos y ,

B2 = 1.5 sin x − cos x + 2 sin y − 0.5 cos y
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Test Problems

Unconstrained Problems
Ptrue of MOP 3
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Test Problems

Unconstrained Problems
PFtrue of MOP 3
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Test Problems

Unconstrained Problems
MOP 4: Proposed by Kursawe. There are disconnected and
asymmetrical portions in Ptrue. PFtrue consists of 3
disconnected curves. It allows the use of an arbitrary number of
decision variables, although scaling this test problem changes
the shape of PFtrue.

F = (f1(~x), f2(~x)), where

f1(~x) =
n−1∑
i=1

(−10e(−0.2)∗
√

x2
i +x2

i+1),

f2(~x) =
n∑

i=1

(|xi |a + 5 sin(xi)
b)

where: −5 ≤ xi ≤ 5; i = 1,2,3;a = 0.8,b = 3
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Test Problems

Unconstrained Problems
Ptrue of MOP 4
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Test Problems

Unconstrained Problems
PFtrue of MOP 4
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Test Problems

Unconstrained Problems
MOP 5: Proposed by Viennet. It has disconnected regions in
Ptrue. PFtrue is a three-dimensional curve.

F = (f1(x , y), f2(x , y), f3(x , y)), where

f1(x , y) = 0.5 ∗ (x2 + y2) + sin(x2 + y2),

f2(x , y) =
(3x − 2y + 4)2

8
+

(x − y + 1)2

27
+ 15,

f3(x , y) =
1

(x2 + y2 + 1)
− 1.1e(−x2−y2)

where: −30 ≤ x , y ≤ 30
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Test Problems

Unconstrained Problems
Ptrue of MOP 5
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Test Problems

Unconstrained Problems
PFtrue of MOP 5
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Test Problems

Unconstrained Problems
MOP 6: Proposed by Deb. Both Ptrue and PFtrue are
disconnected.

F = (f1(x , y), f2(x , y)), where

f1(x , y) = x ,
f2(x , y) = (1 + 10y) ∗

[1− (
x

1 + 10y
)α − x

1 + 10y
sin(2πqx)]

where: 0 ≤ x , y ≤ 1,

q = 4,
α = 2
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Test Problems

Unconstrained Problems
Ptrue of MOP 6
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Test Problems

Unconstrained Problems
PFtrue of MOP 6
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Test Problems

Unconstrained Problems
MOP 7: Proposed by Viennet. Ptrue is connected and PFtrue is a
surface. This problem is relatively easy to solve by any MOEA.

F = (f1(x , y), f2(x , y), f3(x , y)), where

f1(x , y) =
(x − 2)2

2
+

(y + 1)2

13
+ 3,

f2(x , y) =
(x + y − 3)2

36
+

(−x + y + 2)2

8
− 17,

f3(x , y) =
(x + 2y − 1)2

175
+

(2y − x)2

17
− 13

where: −400 ≤ x , y ≤ 400
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Test Problems

Unconstrained Problems
Ptrue of MOP 7
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Test Problems

Unconstrained Problems
PFtrue of MOP 7
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Test Problems

Constrained Problems
Historically, constraints have been handled in MOEAs through the use of
penalty functions [Richardson et al., 1989].

However, many other methods to handle constraints are currently available,
although few of them have been specifically designed for MOEAs.

Jon T. Richardson, Mark R. Palmer, Gunar Liepins, and Mike Hilliard, “Some
Guidelines for Genetic Algorithms with Penalty Functions”, in J. David
Schaffer (Ed), Proceedings of the Third International Conference on Genetic
Algorithms, pp. 191–197, Morgan Kaufmann Publishers, San Mateo,
California, USA, 1989.

B. Y. Qu and P. N. Suganthan, “Constrained Multi-objective Optimization
Algorithm with an Ensemble of Constraint Handling Methods,
Engineering Optimization, Vol. 43, No. 4, pp. 403–416, 2011.
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Test Problems

Constrained Problems
MOP-C1: Proposed by Binh. In this case, Ptrue is an area and
PFtrue is a single convex curve.

F = (f1(x , y), f2(x , y)), where

f1(x , y) = 4x2 + 4y2,

f2(x , y) = (x − 5)2 + (y − 5)2

where:

0 ≤ x ≤ 5, 0 ≤ y ≤ 3
0 ≥ (x − 5)2 + y2 − 25,

0 ≥ −(x − 8)2 − (y + 3)2 + 7.7
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Test Problems

Constrained Problems
Ptrue of MOP-C1
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Test Problems

Constrained Problems
PFtrue of MOP-C1
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Test Problems

Constrained Problems
MOP-C2: Proposed by Osyczka. Both Ptrue and PFtrue are disconnected.

f1(~x) = −(25(x1 − 2)2 + (x2 − 2)2 + (x3 − 1)2

+ (x4 − 4)2 + (x5 − 1)2,

f2(~x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6

0 ≤ x1, x2, x6 ≤ 10, 1 ≤ x3, x5 ≤ 5, 0 ≤ x4 ≤ 6,

0 ≤ x1 + x2 − 2,

0 ≤ 6− x1 − x2,

0 ≤ 2− x2 + x1,

0 ≤ 2− x1 + 3x2,

0 ≤ 4− (x3 − 3)2 − x4

0 ≤ (x5 − 3)2 + x6 − 4
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Test Problems

Constrained Problems
Ptrue of MOP-C2
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Test Problems

Constrained Problems
PFtrue of MOP-C2
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Test Problems

Constrained Problems
MOP-C3: Proposed by Viennet. Ptrue is connected but it’s asymmetrical.
PFtrue is a 3D curve.

f1(x , y) =
(x − 2)2

2
+

(y + 1)2

13
+ 3,

f2(x , y) =
(x + y − 3)2

175
+

(2y − x)2

17
− 13,

f3(x , y) =
(3x − 2y + 4)2

8
+

(x − y + 1)2

27
+ 15

−4 ≤ x , y ≤ 4,

y < −4x + 4,

x > −1,

y > x − 2
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Test Problems

Constrained Problems
Ptrue of MOP-C3
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Test Problems

Constrained Problems
PFtrue of MOP-C3
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Test Problems

Constrained Problems
MOP-C4: Proposed by Tanaka. Ptrue is connected, but PFtrue is disconnected.

f1(x , y) = x ,

f2(x , y) = y

0 < x , y ≤ π,

0 ≥ −(x2)− (y2)

+1 +

(a cos

(b arctan(x/y)))

a = 0.1

b = 16
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Test Problems

Constrained Problems
Ptrue of MOP-C4

Carlos A. Coello Coello Multi-Objective Optimization



Test Problems

Constrained Problems
PFtrue of MOP-C4
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Test Problems

Test Problems Generators
MOP test functions can also be generated by using the single-objective
functions. A methodology for constructing MOPs exhibiting desired
characteristics has been proposed by Deb [1999].

Kalyanmoy Deb, “Multi-Objective Genetic Algorithms: Problem
Difficulties and Construction of Test Problems”, Evolutionary
Computation, 7(3):205-230, Fall 1999.

He points out that when computationally derived a non-uniform distribution of
vectors may exist in some Pareto front. He limits his initial test construction
efforts to unconstrained MOPs of only two functions; his construction
methodology then places restrictions on the two component functions so that
resultant MOPs exhibit desired properties. To accomplish this he defines
various generic bi-objective optimization problems, such as the example of
the next slide.
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Test Problems

Test Problems Generators
Minimize F = (f1(~x), f2(~x)), where

f1(~x) = f (x1, . . . , xm),

f2(~x) = g(xm+1, . . . , xN) h(f (x1, . . . , xm), g(xm+1, . . . , xN)) (1)

where function f1 is a function of (m < N) decision variables and f2 a function
of all N decision variables.

The function g is one of (N −m) decision variables which are not included in
function f .

The function h is directly a function of f and g function values. The f and g
functions are also restricted to positive values in the search space, i.e., f > 0
and g > 0.
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Test Problems

Test Problems Generators
Deb lists five functions each for possible f and g instantiation, and four for h.
These functions may then be “mixed and matched” to create MOPs with
desired characteristics.

He states these functions have the following general effect:

f – This function controls vector representation uniformity along
the Pareto front.

g – This function controls the resulting MOP’s characteristics –
whether it is multifrontal or has an isolated optimum.

h – This function controls the resulting Pareto front’s
characteristics (e.g., convex, disconnected, etc.)

These functions respectively influence search along and towards the Pareto
front, and the shape of a Pareto front in R2. Deb implies that a MOEA has
difficulty finding PFtrue because it gets “trapped” in a local Pareto front.
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Test Problems

Test Problems Generators
MOP-G1: This is an example of the test problems generated
with Deb’s methodology. In this case, PFtrue is convex.

f1(x1) = x1,

f2(~x) = g(1−
√
(f1/g))

g(~x) = 1 + 9
m∑

i=2

xi/(m − 1)

m = 30;0 ≤ xi ≤ 1
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Test Problems

Test Problems Generators
For constrained test MOPs, Deb [2001] suggests extending his methodology
in the following way:

f1(~x) = x1

f2(~x) = g(~x) exp(−f1(~x)/g(~x))

subject to:

cj(x) = f2(~x)− aj exp(−bj f1(~x)) ≥ 0, j = 1, 2, ...J (2)

There are J inequalities, each of which has 2 parameters (aj , bj), which
makes that part of feasible region of the original (unconstrained) problem is
now infeasible.
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Test Problems

Test Problems Generators
Kalyanmoy Deb, Amrit Pratap and T. Meyarivan, “Constrained Test
Problems for Multi-objective Evolutionary Optimization”, in Eckart Zitzler
et al. (Eds.), First International Conference on Evolutionary Multi-Criterion
Optimization, pp. 284–298. Springer-Verlag. Lecture Notes in Computer
Science No. 1993, 2001

An example of this methodology is the following:
Minimize F = (f1(~x), f2(~x)), where

f1(~x) = x1

f2(~x) = (1 + x2)/x1

0.1 ≤ x1 ≤ 1.0

0.0 ≤ x2 ≤ 5.0

subject to:

c1(~x) = x2 + 9x1 ≥ 6

c2(~x) = −x2 + 9x1 ≥ 1 (3)
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Test Problems

Test Problems Generators
In fact, the next generic form is suggested:
Minimize F = (f1(~x), f2(~x)), where

f1(~x) = x1

f2(~x) = g(~x)(1− f1(~x)/g(~x)

subject to:

cj(~x) = cos(θ)(f2(~x)− e)− sin(θ)f1(~x)) ≥
a| sin(bπ(sin)θ)(f2(~x)− e) + cos(θ)f1(~x))c)|d ,
j = 1,2, ...J (4)
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Test Problems

Test Problems Generators
With 6 parameters (θ, a, a, c, d , e), x1 is restricted to the range [0,1] and g(~x)
determines the bounds of the other decision variables.

Selecting values for the 6 parameters, we can generate different fitness
landscapes.

It is worth noting that d controls the length of the continuous region of the
Pareto front. As we decrease this region, a MOEA will tend to find less points
of PFtrue because of the discretization of ~x .
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Test Problems

Test Problems Generators
If we increase the value of a, the length of the “cuts” becomes more profound,
which requires the search to proceed through a narrowed corridor. Evidently,
this makes more difficult the search.

We can also depart from the periodic disconnected regions of PFtrue by
changing c from its initial value of 1.

θ and e control the slope and the change of direction of PFtrue, respectively.
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Test Problems

Zitzler-Deb-Thiele (ZDT) Test Problems
Each of the test problems shown next is structured in the same way and it
consists of 3 functions f1, g, h:

Minimize : F (~x) = (f1, f2),

subject to : f2(~x) = g(x2, . . . , xm)h(f1(x1), g(x2, . . . , xm)),

where : ~x = (x1, . . . , xM). (5)

f1 is a function of only the first decision variable, g is a function of the m − 1
remaining decision variables, and the parameters of h are the values of f1
and g.
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Test Problems

Zitzler-Deb-Thiele (ZDT) Test Problems
Eckart Zitzler, Kalyanmoy Deb and Lothar Thiele, “Comparison of
Multiobjective Evolutionary Algorithms: Empirical Result”, Evolutionary
Computation, 8(2):173-195, Summer 2000.

The test problems differ in these 3 functions and in the number of decision
variables m, as well as in the values that the decision variables can take.
These problems have been heavily used to validated MOEAs in the
specialized literature.
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Test Problems

ZDT Test Problems
PFtrue of ZDT1
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Test Problems

ZDT Test Problems
PFtrue of ZDT2
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Test Problems

ZDT Test Problems
PFtrue of ZDT3
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Test Problems

ZDT Test Problems
PFtrue of ZDT4
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Test Problems

ZDT Test Problems
PFtrue of ZDT5
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Test Problems

ZDT Test Problems
PFtrue of ZDT6
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Test Problems

Deb-Thiele-Laumanns-Zitzler (DTLZ) Test Problems
Another desirable feature of a test problem is that it can scale up to any
number of dimensions.

Since the mapping between the genotypic and the phenotypic space can be
considerably nonlinear, we can exploit this property to generate test problems
with a high degree of difficulty.

Deb et al. [2002,2005] proposed the so-called Deb-Thiele-Laumanns-Zitzler
(DTLZ) test suite in which the problems are scalable to a number of
objectives defined by the user. This test suite has also been very popular in
the specialized literature.

Kalyanmoy Deb, Lothar Thiele, Marco Laumanns and Eckart Zitzler,
“Scalable Test Problems for Evolutionary Multiobjective Optimization”,
in Ajith Abraham, Lakhmi Jain and Robert Goldberg (editors), Evolutionary
Multiobjective Optimization. Theoretical Advances and Applications, pp.
105–145, Springer, USA, 2005.
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Test Problems

DTLZ1
PFtrue is linear, separable and multimodal.

Minimize:

f1(x) =
1
2

x1x2 . . . xM−1(1 + g(xM)), (6)

f2(x) =
1
2

x1x2 . . . (1− xM−1)(1 + g(xM)), (7)

...
... (8)

fM−1(x) =
1
2

x1(1− x2)(1 + g(xM)), (9)

fM(x) =
1
2
(1− x1)(1 + g(xM)), (10)

subject to 0 ≤ xi ≤ 1 ∀ i = 1, 2, ..., n (11)

where: g(xM) = 100

|xM |+
∑

xi∈xM

(xi − 0.5)2 − cos(20π(xi − 0.5))

 (12)
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Test Problems

DTLZ1
It is normally adopted with M = 3. The Pareto optimal set is
located at x∗M = 0 and the values of the objective functions at
the linear hyperplane

∑M
m=1 = 0.5.

The search space contains (11k − 1) local Pareto fronts (k is a
value defined by the user, such that the number of decision
variables is: n = M + k − 1. It is common to adopt k = 5).
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Test Problems

DTLZ Test Problems
PFtrue of DTLZ1
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Test Problems

DTLZ2
Minimize:

f1(x) = (1 + g(xM)) cos(x1π/2) cos(x2π/2) . . . cos(xM−2π/2) cos(xM−1π/2),

f2(x) = (1 + g(xM)) cos(x1π/2) cos(x2π/2) . . . cos(xM−2π/2) sin(xM−1π/2),

f3(x) = (1 + g(xM)) cos(x1π/2) cos(x2π/2) . . . sin(xM−2π/2),
...

...

fM−1(x) = (1 + g(xM)) cos(x1π/2) sin(x2π/2),

fM(x) = (1 + g(xM)) sin(x1π/2).

subject to: 0 ≤ xi ≤ 1 ∀ i = 1, 2, ..., n

where: g(xM) =
∑

xi∈XM

(xi − 0.5)2
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Test Problems

DTLZ2
The Pareto optimal set is located at: xi = 0.5 for every xi ∈ xM
and all the objective functions have to satisfy:

∑M
i=1(fi)

2 = 1. It
is suggested to use k = |xM | = 10.

The total number of decision variables is: n = M + k − 1.
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Test Problems

DTLZ Test Problems
PFtrue of DTLZ2
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Test Problems

DTLZ3
Minimize:

f1(x) = (1 + g(xM)) cos(x1π/2) cos(x2π/2) . . . cos(xM−2π/2) cos(xM−1π/2),

f2(x) = (1 + g(xM)) cos(x1π/2) cos(x2π/2) . . . cos(xM−2π/2) sin(xM−1π/2),

f3(x) = (1 + g(xM)) cos(x1π/2) cos(x2π/2) . . . sin(xM−2π/2),
...

...

fM−1(x) = (1 + g(xM)) cos(x1π/2) sin(x2π/2),

fM(x) = (1 + g(xM)) sin(x1π/2).

subject to: 0 ≤ xi ≤ 1 ∀ i = 1, 2, ..., n

where: g(xM) = 100[|xM |+
∑

xi∈xM

(xi − 0.5)2 − cos(20π(xi − 0.5))]
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Test Problems

DTLZ3
It is suggested that k = |xM | = 10. There is a total of n = M + k − 1 decision
variables.

The function g described before, introduces (3k - 1) false Pareto fronts. All of
these false Pareto fronts are parallel to the global Pareto front and, therefore,
a MOEA can get easily trapped in one of them before converging to the
Pareto optimal front which is located at g∗ = 0.

The true Pareto front corresponds to xM = (0.5, . . . , 0.5)T .
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Test Problems

DTLZ Test Problems
PFtrue of DTLZ3

Carlos A. Coello Coello Multi-Objective Optimization



Test Problems

DTLZ4
Minimize:

f1(x) = (1 + g(xM)) cos(xπ1 π/2) cos(xπ2 π/2) . . . cos(xπM−2π/2) cos(xπM−1π/2),

f2(x) = (1 + g(xM)) cos(xπ1 π/2) cos(xπ2 π/2) . . . cos(xπM−2π/2) sin(xπM−1π/2),

f3(x) = (1 + g(xM)) cos(xπ1 π/2) cos(xπ2 π/2) . . . sin(xπM−2π/2),
...

...

fM−1(x) = (1 + g(xM)) cos(xπ1 π/2) sin(xπ2 π/2),

fM(x) = (1 + g(xM)) sin(xπ1 π/2).

subject to: 0 ≤ xi ≤ 1 ∀ i = 1, 2, ..., n

where: g(xM) =
∑

xi∈XM

(xi − 0.5)2
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Test Problems

DTLZ4
It is suggested to use α = 100 in this case. Again, all the decision variables
x1 to xM−1 are varied in the range (0 : 1).

It is also suggested to use k = 10. There are n = M + k − 1 decision
variables in this problem.

In this case, there is dense set of solutions close to the plane fM − f1.
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Test Problems

DTLZ Test Problems
PFtrue of DTLZ4

Carlos A. Coello Coello Multi-Objective Optimization



Test Problems

DTLZ5
Minimize:

f1(x) = (1 + g(xM)) cos(θ1π/2) cos(θ2π/2) . . . cos(θM−2π/2) cos(θM−1π/2),

f2(x) = (1 + g(xM)) cos(θ1π/2) cos(θ2π/2) . . . cos(θM−2π/2) sin(θM−1π/2),

f3(x) = (1 + g(xM)) cos(θ1π/2) cos(θ2π/2) . . . sin(θM−2π/2),
...

...

fM−1(x) = (1 + g(xM)) cos(θ1π/2) sin(θ2π/2),

fM(x) = (1 + g(xM)) sin(θ1π/2).

subject to: 0 ≤ xi ≤ 1 ∀ i = 1, 2, ..., n

where: θi =
π

4(1 + g(xM))
(1 + 2g(xM)xi), for i = 2, 3, . . . , (M − 1)

g(xM) =
∑

xi∈XM

(xi − 0.5)2
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Test Problems

DTLZ5
It is suggested to use function g with k = |xM | = 10. Also, there are n =
M + k − 1 decision variables and the Pareto optimal set corresponds to
xi = 0.5 for every xi ∈ xM and every objective function must satisfy:∑M

i=1(fi)
2 = 1.

This problem evaluates the capability of a MOEA to converge to a curve.

It is suggested to use (M ∈ [5, 10]).
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Test Problems

DTLZ Test Problems
PFtrue of DTLZ5
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Test Problems

DTLZ6
Minimize:

f1(x) = (1 + g(xM)) cos(θ1π/2) cos(θ2π/2) . . . cos(θM−2π/2) cos(θM−1π/2),

f2(x) = (1 + g(xM)) cos(θ1π/2) cos(θ2π/2) . . . cos(θM−2π/2) sin(θM−1π/2),

f3(x) = (1 + g(xM)) cos(θ1π/2) cos(θ2π/2) . . . sin(θM−2π/2),
...

...

fM−1(x) = (1 + g(xM)) cos(θ1π/2) sin(θ2π/2),

fM(x) = (1 + g(xM)) sin(θ1π/2).

subject to: 0 ≤ xi ≤ 1 ∀ i = 1, 2, ..., n

where: θi =
π

4(1 + g(xM))
(1 + 2g(xM)xi),∀i = 2, 3, . . . , (M − 1)

g(xM) =
∑

xi∈XM

(xi)
0.1
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Test Problems

DTLZ6
The Pareto optimal set is located at xi = 0 for every xi ∈ xM .

The size of the vector xM is chosen as 10 and the total number
of decision variables is identical to the one used for DTLZ5.
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Test Problems

DTLZ Test Problems
PFtrue of DTLZ6
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Test Problems

DTLZ7
Minimize:

f1(x) = x1,

f2(x) = x2,

...
...

fM−1(x) = xM−1

fM(x) = (1 + g(xM)) · h(f1, f2, . . . , fM−1g(x))

subject to: 0 ≤ xi ≤ 1 ∀ i = 1, 2, ..., n

where: g(x) = 1 +
9
|xM |

∑
xi∈xM

xi ,

h(f1, f2, . . . , fM−1, g) = M −
M−1∑
i=1

(
fi

1 + g(x)
(1 + sin(3πfi))

)
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Test Problems

DTLZ7
This problem has 2M − 1 disconnected Pareto optimal regions.

g requires k = |xM j | decision variables and the total number of decision
variables is n = M + k − 1. It is suggested to use k = 20.

The Pareto optimal set corresponds to xM = 0.

This problem aims to test the ability of a MOEA to maintain, simultaneously,
solutions at different regions of the search space.
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Test Problems

DTLZ Test Problems
PFtrue of DTLZ7
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Test Problems

DTLZ8
Minimize:

fj(x) =
1

bn/Mc

bj n
M c∑

bi=(j−1) n
M c

(xi) ,∀j = 1, 2, . . . ,M,

subject to: 0 ≤ xi ≤ 1 ∀ i = 1, 2, ..., n

where: gj(x) = fM(x) + 4fj(x)− 1 ≥ 0, ∀j = 1, 2, . . . , (M − 1)

gM(x) = 2fM(x) + minM−1
i,j=1,i 6=j [fi(x) + fj(x)]− 1 ≥ 0,
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Test Problems

DTLZ8
The number of decision variables must be larger than the number of
objectives n > M. It is suggested to use n = 10M.

This problem has M constraints. The true Pareto front is a combination of a
straight line and a hyperplane.

The straight line is the intersection of the first (M − 1) constraints (with
f1 = f2 = . . . = fM − 1 and the hyperplane is represented through constraint
gM ).
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Test Problems

DTLZ Test Problems
PFtrue of DTLZ8
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Test Problems

DTLZ9
Minimize:

fj(x) =
1

bn/Mc

bj n
M c∑

bi=(j−1) n
M c

(
x0.1

i

)
,∀j = 1, 2, . . . ,M,

subject to: 0 ≤ xi ≤ 1 ∀ i = 1, 2, ..., n

where: gj(x) = f 2
M(x) + f 2

j (x)− 1 ≥ 0,∀j = 1, 2, . . . , (M − 1)
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Test Problems

DTLZ9
The number of decision variables must be larger than the number of
objectives. It is suggested to use: n = 10M.

The true Pareto front is a curve with f1 = f2 = . . . = fM − 1, similar to the
Pareto front of DTLZ5. However, in this case, the density of solutions
decreases as we approach the Pareto optimal region.

The Pareto front is at the intersection of all the (M − 1) constraints, which can
cause difficulties to a MOEA.
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Test Problems

DTLZ Test Problems
PFtrue of DTLZ9
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Test Problems

Okabe’s Test Problems
Tatsuya Okabe et. al [2004] proposed a methodology to generate
multi-objective test problems based on a mapping of probability density
functions from decision variable space to objective function space. They also
provide two examples of this methodology.

The basic idea is to depart from an initial space (called S2) between decision
variable space and objective function space and from there, they build both
spaces by applying appropriate functions to S2. For this sake, the authors
proposed to use the inverse of the generation operation (i.e., deformation,
rotation and translation).

Tatsuya Okabe, Yaochu Jin, Markus Olhofer and Bernhard Sendhoff, “On
Test Functions for Evolutionary Multi-objective Optimization”, in Xin Yao
et al. (editors), Parallel Problem Solving from Nature - PPSN VIII,
Springer-Verlag, Lecture Notes in Computer Science, Vol. 3242, pp.
792–802, Birmingham, UK, September 2004.
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Test Problems

Okabe’s Test Problems
OKA1:
Minimize:

f1 = x ′1,

f2 =
√

2π −
√
|x ′1|+ 2|x ′2 − 3 cos(x ′1)− 3|

1
2 ,

where:
x ′1 = cos(π/12)x1 − sin(π/12)x2,

x ′2 = sin(π/12)x1 + cos(π/12)x2,

subject to:
x1 ∈ [6 sin(π/12),6 sin(π/12) + 2π cos(π/12)],

x2 ∈ [−2π sin(π/12),6 cos(π/12)],
(13)
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Test Problems

Okabe’s Test Problems
The Pareto optimal set is located at: x ′2 = 3 cos(x ′1 + 3) and x ′1 ∈ [0, 2π].

The Pareto front is located at: f2 =
√

(2π)−
√

f1 and f1 ∈ [−π, π].

The Distribution indicator is:

Dx→f =
3
2
|x ′2 − 3 cos(x ′1)− 3|

2
3 (14)

The Distribution indicator measures the amount of distortion that the
probability density suffers in decision variable space under the mapping from
decision variable space to objective function space.
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Test Problems

Okabe’s Test Problems
Pareto front of OKA1
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Test Problems

Okabe’s Test Problems
Pareto optimal set of OKA1
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Test Problems

Okabe’s Test Problems
OKA2:
Minimize:

f1 = x1,

f2 = 1− 1
4π2 (x1 + π)2 + |x2 − 5 cos(x1)|

1
3 + |x3 − 5 sin(x1)|

1
3 ,

subject to:
x1 ∈ [−π, π],

x2, x3 ∈ [−5,5]
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Test Problems

Okabe’s Test Problems
The Pareto optimal set is located at: (x1, x2, x3) = (x1, 5 cos(x1), 5 sin(x1))
and x1 ∈ [−π, π].

The true Pareto front is located at: f2 = 1− 1
4π2 (f1 + π)2 and f1 ∈ [−π, π].

The Distribution indicator is: Dx→f = 9|x2 − 5 cos(x1)|
2
3 |x3 − 5 sin(x1)|

2
3 .
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Test Problems

Okabe’s Test Problems
Pareto front of OKA2
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Test Problems

Okabe’s Test Problems
Pareto optimal set of OKA2
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Test Problems

WFG Test Problems
Huband et al. [2006] proposed a methodology to design test problems which
are quite challenging for MOEAs. The set that they used to exemplify their
methodology is known as the Walking-Fish-Group (WFG) test suite.

In the next slides, we show the shapes for the objective functions and the
transformation functions.

Simon Huband, Phil Hingston, Luigi Barone and Lyndon While, “A Review of
Multiobjective Test Problems and a Scalable Test Problem Toolkit”, IEEE
Transactions on Evolutionary Computation, Vol. 10, No. 5, pp. 477–506,
October 2006.
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WFG Test Problems (Shapes for the objective
functions)

linear1(x1, . . . , xM−1) =
M−1∏
i=1

xi

linearm=2:M−1(x1, . . . , xM−1) =

(
M−m∏
i=1

xi

)
(1− xM−m+1)

linearM(x1, . . . , xM−1) = 1− x1

convex1(x1, . . . , xM−1) =
M−1∏
i=1

(1− cos(xiπ/2))

convexm=2:M−1(x1, . . . , xM−1) =

(
M−m∏
i=1

(1− cos(xiπ/2))

)
(1− sin(xM−m+1π/2))

convexM(x1, . . . , xM−1) = 1− sin(x1π/2)
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WFG Test Problems (Shapes for the objective
functions)

concave1(x1, . . . , xM−1) =
M−1∏
i=1

sin(xiπ/2))

concavem=2:M−1(x1, . . . , xM−1) =

(
M−m∏
i=1

sin(xiπ/2)

)
cos(xM−m+1π/2)

concaveM(x1, . . . , xM−1) = cos(x1π/2)

mixedM(x1, . . . , xM−1) =

(
1− x1 −

cos(2Aπx1 + π/2)
2Aπ

)α
discM(x1, . . . , xM−1) = 1− xα1 cos2(Axβ1 π)
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WFG Test Problems (Transformation functions)

b poly(y, α) = yα

b flat(y, A, B,C) = A + min(0, by − Bc)
A(B − y)

B
− min(0, bC − yc)

(1− A)(y − C)

1− C

b param(y, u(~y′), A, B,C) = y
B+(C−B)

(
A−(1−2u(~y′))

∣∣∣⌊0.5−u(~y′)
⌋
+A
∣∣∣)

s linear(y, A) =
|y − A|

|bA− yc + A|

s decept(y, A, B,C) = 1+(|y − A|−B)

 by − A + Bc
(

1− C + A−B
B

)
A− B

+
bA + B − yc

(
1− C + 1−A−B

B

)
1− A− B

+
1

B



s multi(y, A, B,C) =
1 + cos

(
(4A + 2)π

(
0.5− |y−C|

2(bC−yc+C)

))
+ 4B

(
|y−C|

2(bC−yc+C)

)2

b + 2

r sum(~y, ~w) =

∑|~y|
i=1 w1yi∑|~y|

i=1 wi

r nonsep(~y, A) =

∑|~y|
j=1

(
yj +

∑A−2
k=0

∣∣∣yj − y1+(j+k)mod|~y|
∣∣∣)

|~y|
A

⌈
A
2

⌉ (
1 + 2A− 2

⌈
A
2

⌉)
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Test Problems

WFG1:
Minimize

fm=1:M−1(~x) = xM + Smconvexm(x1, . . . , xM−1)

fM (~x) = xM + SM mixedM (x1, . . . , xM−1)

where

yi=1:M−1 = r sum([y′(i−1)k/(M−1)+1, . . . , y′ik/(M−1)], [2((i − 1)k/(M − 1) + 1), . . . , 2ik/(M − 1)])

yM = r sum([y′k+1, . . . , y′n ], [2(k + 1), . . . , 2n])

y′i=1:n = b poly(y′′i , 0.02)

y′′i=1:k = y′′′i

y′′i=k+1:n = b flat(y′′′i , 0.8, 0.75, 0.85)

y′′′i=1:k = zi,[0,1]

y′′′i=k+1:n = s linear(zi,[0,1], 0.35)
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Test Problems

For all problems:
The decision vector is z = [z1, . . . , zk , zk+1, . . . , zn] where
0 ≤ zi ≤ zi,max.

zi=1:n,max = 2i

zi=1:n,[0,1] =
zi

zi,max

xi=1:M−1 = max(yM ,Ai)(yi − 0.5) + 0.5
xM = yM

Sm=1:M = 2m
A1 = 1

A2:M−1 =

{
0, for WFG3
1, otherwise
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Test Problems

WFG Test Problems
Pareto front of WFG1
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Test Problems

WFG2:
Minimize

fm=1:M−1(~x) = xM + Smconvexm(x1, . . . , xM−1)

fM(~x) = xM + SM discM(x1, . . . , xM−1)

where

yi=1:M−1 = r sum([y ′(i−1)k/(M−1)+1, . . . , y
′
ik/(M−1)], [1, . . . , 1])

yM = r sum([y ′k+1, . . . , y
′
k+l/2], [1, . . . , 1])

y ′i=1:k = y ′′i
y ′i=k+1:k+l/2 = r nonsep([y ′′k+2(i−k)−1, y

′′
k+2(i−k)], 2)

y ′′i=1:k = zi,[0,1]

y ′′i=k+1:n = s linear(zi,[0,1], 0.35)
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Test Problems

WFG Test Problems
Pareto front of WFG2
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Test Problems

WFG3:
Minimize

fm=1:M(~x) = xM + Smlinearm(x1, . . . , xM−1)

where

yi=1:M−1 = r sum([y ′(i−1)k/(M−1)+1, . . . , y
′
ik/(M−1)], [1, . . . , 1])

yM = r sum([y ′k+1, . . . , y
′
k+l/2], [1, . . . , 1])

y ′i=1:k = y ′′i
y ′i=k+1:k+l/2 = r nonsep([y ′′k+2(i−k)−1, y

′′
k+2(i−k)], 2)

y ′′i=1:k = zi,[0,1]

y ′′i=k+1:n = s linear(zi,[0,1], 0.35)
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Test Problems

WFG Test Problems
Pareto front of WFG3
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Test Problems

WFG4:
Minimize

fm=1:M(~x) = xM + Smconcavem(x1, . . . , xM−1)

where

yi=1:M−1 = r sum([y ′(i−1)k/(M−1)+1, . . . , y
′
ik/(M−1)], [1, . . . , 1])

yM = r sum([y ′k+1, . . . , y
′
n], [1, . . . , 1])

y ′i=1:n = s multi(zi,[0,1], 30, 10, 0.35)
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Test Problems

WFG Test Problems
Pareto front of WFG4
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Test Problems

WFG5:
Minimize

fm=1:M(~x) = xM + Smconcavem(x1, . . . , xM−1)

where

yi=1:M−1 = r sum([y ′(i−1)k/(M−1)+1, . . . , y
′
ik/(M−1)], [1, . . . , 1])

yM = r sum([y ′k+1, . . . , y
′
n], [1, . . . , 1])

y ′i=1:n = s decept(zi,[0,1], 0.35, 0.001, 0.05)
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Test Problems

WFG Test Problems
Pareto front of WFG5
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Test Problems

WFG6:
Minimize

fm=1:M(~x) = xM + Smconcavem(x1, . . . , xM−1)

where

yi=1:M−1 = r nonsep([y ′(i−1)k/(M−1)+1, . . . , y
′
ik/(M−1)], k/(M − 1))

yM = r nonsep([y ′k+1, . . . , y
′
n], l)

y ′i=1:k = zi,[0,1]

y ′i=k+1:n = s linear(zi,[0,1], 0.35)
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Test Problems

WFG Test Problems
Pareto front of WFG6
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Test Problems

WFG7:
Minimize

fm=1:M (~x) = xM + Smconcavem(x1, . . . , xM−1)

where

yi=1:M−1 = r sum([y′(i−1)k/(M−1)+1, . . . , y′ik/(M−1)], [1, . . . , 1])

yM = r sum([y′k+1, . . . , y′n ], [1, . . . , 1])

y′i=1:k = y′′i

y′i=k+1:n = s linear(y′′i , 0.35)

y′′i=1:k = b param(zi,[0,1], r sum([zi+1,[0,1], . . . , zn,[0,1]], [1, . . . , 1]), 0.98/49.98, 0.02, 50)

y′′i=k+1:n = zi,[0,1]
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Test Problems

WFG Test Problems
Pareto front of WFG7

Carlos A. Coello Coello Multi-Objective Optimization



Test Problems

WFG8:
Minimize

fm=1:M (~x) = xM + Smconcavem(x1, . . . , xM−1)

where

yi=1:M−1 = r sum([y′(i−1)k/(M−1)+1, . . . , y′ik/(M−1)], [1, . . . , 1])

yM = r sum([y′k+1, . . . , y′n ], [1, . . . , 1])

y′i=1:k = y′′i

y′i=k+1:n = s linear(y′′i , 0.35)

y′′i=1:k = zi,[0,1]

y′′i=k+1:n = b param(zi,[0,1], r sum([z1,[0,1], . . . , zi−1,[0,1]], [1, . . . , 1]), 0.98/49.98, 0.02, 50)
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Test Problems

WFG Test Problems
Pareto front of WFG8
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Test Problems

WFG9:
Minimize

fm=1:M (~x) = xM + Smconcavem(x1, . . . , xM−1)

where

yi=1:M−1 = r nonsep([y′(i−1)k/(M−1)+1, . . . , y′ik/(M−1)], k/(M − 1))

yM = r nonsep([y′k+1, . . . , y′n ], l)

y′i=1:k = s decept(y′′i , 0.35, 0.001, 0.05)

y′i=k+1:n = s multi(y′′i , 30, 95, 0.35)

y′′i=1:n−1 = b param(zi,[0,1], r sum([zi+1,[0,1], . . . , zn,[0,1]], [1, . . . , 1]), 0.98/49.98, 0.02, 50)

y′′n = zn,[0,1]
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Test Problems

WFG Test Problems
Pareto front of WFG9
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Test Problems

Use of Lamé Superspheres
In order to design multi-objective test problems with different Pareto optimal
fronts, Emmerich and Deutz [2007] introduced a scalable test suite based on
the Lamé superspheres (LSS). Although this methodology is limited to
design Pareto optimal geometries with spherical shapes, it can be considered
as the first study focused on the Pareto shape of multi-objective test
problems. Something remarkable about this proposal are the mirror test
problems which adopt an inverted sphere as the Pareto shape of the
proposed multi-objective test problems. Even though the use of mirror
spheres had already been adopted as a Pareto optimal surface by Huband et
al. [2006], the parameter γ of the Lamé spheres is able to modify the
convexity/concavity degree in these test problems.

Michael T.M. Emmerich and André H. Deutz, “Test Problems Based on
Lamé Superspheres”, in Shigeru Obayashi et al. (Eds), Evolutionary
Multi-Criterion Optimization, 4th International Conference, EMO 2007, pp.
922–936, Springer. Lecture Notes in Computer Science Vol. 4403,
Matshushima, Japan, March 2007.
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Test Problems

Use of Lamé Superspheres

In addition to new Pareto optimal shapes, the Lamé
superspheres test suite incorporates features such as
multi-modality and many-to-one mapping which introduce
additional difficulties for solving these problems using a MOEA.
Since this test suite adopts the DTLZ framework, distance and
position parameters can also be easily identified.
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Test Problems

Complicated Pareto Sets
Saxena et al. [2011] extended the principle of complicated Pareto sets (PSs)
initially introduced for two- and three-objective problems [Zhang, 2009] to
scalable multi-objective test problems. The Saxena-Zhang-Duro-Tieari
(SZDT) test suite introduces seven unconstrained test problems and the
possibility of designing new test problems by choosing a combination
between Pareto optimal shapes and complicated PS topologies.

Dhish Kumar Saxena, Qingfu Zhang, João A. Duro and Ashutosh Tiwari,
“Framework for Many-Objective Test Problems with Both Simple and
Complicated Pareto-Set Shapes”, in Ricardo H.C. Takahashi et al. (Eds),
Evolutionary Multi-Criterion Optimization, 6th International Conference, EMO
2011, pp. 197–211, Springer. Lecture Notes in Computer Science Vol. 6576,
Ouro Preto, Brazil, April 2011.

Hui Li and Qingfu Zhang, “Multiobjective Optimization Problems with
Complicated Pareto Sets, MOEA/D and NSGA-II”, IEEE Transactions on
Evolutionary Computation, Vol. 13, No. 2, pp. 284–302, April 2009.
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Complicated Pareto Sets
The Pareto optimal fronts for all these test problems are defined in one and
two dimensions, i.e., they become degenerate for more than two and three
objectives, respectively.

Regarding the Pareto optimal fronts, four continuous and connected surfaces
including convexity and concavity generalize the Pareto shapes in this test
suite. The convergence difficulties in this benchmark are specifically stated
by the topology of the PSs.

The absence of multi-modality and non-separability, are the shortcomings in
this test suite. However, the use of the modular approach in this testbed,
makes difficult to determine position and distance parameters, which
becomes an advantage over the previous test suites.
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Large Scale MOPs
As pointed out by Huband et al. [2006], variable linkages should be
considered in the construction of multi-objective test problems. This feature in
test instances is particularly important because, it makes it more difficult for a
MOEA to properly exploit optimal solutions.

Cheng et al. [2017] introduced a set of nine test problems specially designed
to test MOEAs for large scale optimization (i.e., for multi-objective problems
with a large number of decision variables).

Ran Cheng, Yaochu Jin, Markus Olhofer and Bernhard Sendhoff, “Test
Problems for Large-Scale Multiobjective and Many-Objective
Optimization”, IEEE Transactions on Cybernetics, Vol. 47, No. 12, pp.
4108–4121, December 2017.

Carlos A. Coello Coello Multi-Objective Optimization



Test Problems

Large Scale MOPs
In the Large Scale Multi-Objective Problems (LSMOPs), the variable
dependencies are stated by two linear variable linkage functions (linear and
nonlinear).

In addition to the dependencies among variables, this test suite introduces
correlation between decision variables and objectives by means of a
correlation matrix. Although the test problems are scalable to an arbitrary
number of objectives, this test suite is limited to three Pareto optimal shapes,
concretely, the PFs from DTLZ1 (normalized in objective function space),
DTLZ2, and DTLZ7.
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A Toolkit
Masuda et al. [2016] proposed a toolkit to generate scalable test problems.
This test suite is mainly focused on the design of different Pareto optimal
shapes. The methodology introduced in this approach allows the design of
Pareto optimal surfaces by using a finite number of vertices. Such vertices
state the Pareto optimal front whose shape can be defined as linear,
concave, or convex. Although only two test problems were instantiated, the
toolkit provides a methodology for designing scalable test problems with
Pareto optimal surfaces having an arbitrary number of vertices.

Hiroyuki Masuda, Yusuke Nojima and Hisao Ishibuchi, “Common Properties
of Scalable Multiobjective Problems and a New Framework of Test
Problems”, in 2016 IEEE Congress on Evolutionary Computation
(CEC’2016), pp. 3011–3018, IEEE Press, Vancouver, Canada, 24–29 July
2016, ISBN 978-1-4799-1488-3.
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A Toolkit
A remarkable aspect of the Masuda-Nojima-Ishibuchi (MNI)
test suite, is that at different distances from the PF, different PF
shapes can be produced. This offers certain difficulty in
identifying position and distance parameters.
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Multi-Line Distance Minimization Problems
Li et al. [2018] proposed and discussed a class of scalable multi-objective
test instances called multi-line distance minimization problems (ML-DMP) to
evaluate the performance of evolutionary approaches in high-dimensional
objective spaces. The test problems proposed in this test suite, were mainly
introduced for visual examination of solution diversity in the decision space
instead of the objective space.

Miqing Li, Crinan Grosan, Shengxiang Yang, Xiaohui Liu and Xin Yao,
“Multi-Line Distance Minimization: A Visualized Many-Objective Test
Problem Suite”, IEEE Transactions on Evolutionary Computation, Vol. 22,
No. 1, pp. 61–78, February 2018.
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Multi-Line Distance Minimization Problems
Two are the main characteristics of this test suite: 1) the Pareto
optimal solutions lie in a regular polygon in a two-dimensional
decision space, and 2) these solutions are similar (in the sense
of Euclidean geometry) to their images in high-dimensional
spaces. This allows to understand the distribution of the
objective vector set by observing the solution set in the
two-dimensional decision space in which these test problems
are defined.
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Minus Problems
Ishibuchi et al. [2017] proposed minus versions of the DTLZ
and WFG test problems (namely minus-DTLZ (DTLZ−1) and
minus-WFG (WFG−1), respectively) as scalable test problems
with clear differences from their original versions. These test
problems stand out mainly because the Pareto optimal fronts of
the original DTLZ and WFG test problems are inverted to obtain
a similar effect as in the mirror LSS test problems [Emmerich,
2007].

Hisao Ishibuchi, Yu Setoguchi, Hiroyuki Masuda and Yusuke Nojima,
“Performance of Decomposition-Based Many-Objective Algorithms
Strongly Depends on Pareto Front Shapes”, IEEE Transactions on
Evolutionary Computation, Vol. 21, No. 2, pp. 169–190, April 2017.
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Minus Problems
However, in this test suite, different geometries (the geometries used in the
DTLZ and WFG test problems) are employed instead of being limited to the
superspheres as in the case of the mirror LSS test problems.

Some important key points to consider are the following: 1) all the test
problems maintain the same properties respect to the difficulties of the
distance functions; and 2) different test problems promote the design of
diversity mechanisms to achieve a proper representation of the inverted
DTLZ and WFG Pareto optimal fronts.
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MaF
Cheng et al. [2017] presented a compilation of 15 test problems which are
presented as a scalable test suite, called MaF. In this test suite, the authors’
intention is to compile a set of test problems with different features in order to
evaluate many-objective evolutionary approaches.

Most of the test problems included in this test suite were taken from already
formulated test problems such as WFG, DTLZ, and ML-DMP, among other
test suites. Thus, a wide variety of features can be found in this test suite
which, indeed, shall be able to assess the robustness of many-objective
evolutionary approaches.

Ran Cheng, Miqing Li, Ye Tian, Xingyi Zhang, Shengxiang Yang, Yaochu Jin
and Xin Yao, “A benchmark test suite for evolutionary many-objective
optimization ”, Complex & Intelligence Systems, Vol. 3, No. 1, pp. 67–81,
March 2017.
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Approaches to Design MOPs
In general, there are three different techniques which have been adopted in
the construction of multi-objective test problems [Deb et al., 2005]: (1)
Multiple single-objective approach, (2) Bottom-Up approach, and (3)
Constraint surface approach.

Multiple Single-Objective Approach
This is an intuitive method that combines a number of single-objective
optimization problems to formulate a multi-objective model. This strategy was
extensively adopted in the early days of evolutionary multi-objective
optimization research. The main disadvantage of this approach is that the
Pareto set (PS) and the Pareto front (PF) are unknown, and depending of the
single-objective functions, they can be very difficult to state. This, in fact,
complicates the analysis of results and the comparison of MOEAs may
become unfair. Nonetheless, this methodology has been recently adopted to
formulate new multi-objective test problems.

Carlos A. Coello Coello Multi-Objective Optimization



Test Problems

Bottom-Up Approach
The bottom-up approach [Deb et al., 2005] is a flexible method that has
facilitated the design of multi-objective test problems. In this approach, the
Pareto optimal front, the objective space and the decision space are
separately constructed. Concretely, the decision variables are splitted into
two groups: “position” and “distance” parameters.

The Pareto optimal surface is constructed by parametric functions (position
functions) whose inputs are the position parameters. The objective space is
stated by constructing an extreme boundary surface parallel to the Pareto
optimal surface, so that the hyper-volume bounded by these two surfaces
constitutes the attainable objective space. Finally, each decision variable
vector is mapped into objective space.
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Bottom-Up Approach
This task is carried out by defining linear/nonlinear functions where the inputs
are the distance parameters. Such functions (known as distance functions)
establish the distance of the objective vectors to the PF. Therefore, the
difficulty to approximate solutions to the PF depends directly on the difficulty
of solving such distance functions.

Because of its flexibility, the bottom-up approach has been successfully
employed in the construction of multi-objective test problems, particularly in
the design of scalable test problems. However, most of the test suites
adopting the bottom-up approach assume that position and distance
parameters are completely uncorrelated—i.e. they can be easily
identified—which is something hardly seen in real-world problems.
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Constraint Surface Approach
This method was introduced to construct constrained multi-objective test
problems [Deb et al., 2005]. Unlike the bottom-up approach that starts from a
pre-defined Pareto optimal surface, the constraint surface approach first
states the overall search space.

Second, a number of linear/non-linear constraints involving the objective
function values is added, thus erasing part of the objective space (i.e.,
restricting the search space). Finally, by defining linear/non-linear objective
functions, the decision variable space is mapped into the objective space.

Kalyanmoy Deb, Lothar Thiele, Marco Laumanns and Eckart Zitzler,
“Scalable Test Problems for Evolutionary Multiobjective Optimization”,
in Ajith Abraham, Lakhmi Jain and Robert Goldberg (Editors), Evolutionary
Multiobjective Optimization. Theoretical Advances and Applications, pp.
105–145, Springer, USA, 2005.
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Recommendations and Features
The construction of multi-objective test problems should satisfy some
requirements and should include characteristics aimed to evaluate specific
components of MOEAs. In particular, when a test instance possesses
different characteristics, the test problem should evaluate the robustness of a
MOEA, i.e., the capability of a MOEA to solve a test problem with a certain
number of features.

Several criteria for the construction of multi-objective test instances have
been discussed by a number of researchers, particularly in the pioneering
works of Deb et al. [2005] and Huband et al. [2006].
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Recommendations and Features
Huband et al. [2006] analyzed and justified different requirements which
should be considered in the design of multi-objective test problems. We will
show next the seven recommendations (R1–R7) and the five features
(F1–F5) discussed by Huband et al. [2006]. However, because of the
inherent progress on evolutionary multi-objective optimization, other features
(F6–F8) are also added and described.
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Recommendations
R1: No Extremal Parameters Prevents exploitation by truncation based correction operators
R2: No Medial Parameters Prevents exploitation by intermediate recombination
R3: Scalable Number of Parameters Increases flexibility, demands scalability
R4: Scalable Number of Objectives Increases flexibility, demands scalability
R5: Dissimilar Parameter Domains Encourages EAs to scale mutation strengths appropriately
R6: Dissimilar Trade-off Ranges Encourages normalization of objective values
R7: Pareto Optima Known Facilitates the use of measures, analysis of results,

in addition to other benefits

Features
F1: Pareto Optimal Geometry Convex, linear, concave, mixed, degenerate, disconnected,

or some combination
F2: Parameter dependencies Objectives can be separable or non-separable
F3: Bias Substantially more solutions exist in some regions of

fitness space than they do in others
F4: Many-to-one mappings Pareto one-to-one/many-to-one, flat regions, isolated optima
F5: Modality Uni-modal, or multi-modal (possibly deceptive multi-modality)
F6: Difficult Pareto Set Topology Pareto set difficult to characterize
F7: Difficult Pareto Front Shape Pareto optimal front difficult to estimate
F8: Correlation of Position
and Distance Functions Dependencies between position and distance functions
F9: Single Optimal Solution
for a High Number of Objectives Single objective solution for multiple objective functions
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Limitations of Current Benchmarks
All modern benchmarks follow the bottom-up approach. This form to
formulate multi-objective test problems splits the construction of the PF and
the design of the search space which, in fact, facilitates the construction of
multi-objective problems specially in high-dimensional objective spaces.

Recommendations (R1–R7) are partially covered by most of the modern test
problems, being the WFG test suite, the only set of problems that satisfies
entirely such requirements.

In the case of features related to the search space (F2–F5), most of the
modern test problems do not adhere or cannot fit in a specific or desirable
combination of features. While these features can be studied separately,
there is no reason to assume that a real-world problem does not adhere
simultaneously to several of these features at the same time.
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Limitations of Current Benchmarks
Although one might doubt the existence of multi-objective problems having a
combination of characteristics different from the ones formulated in the
existing scalable test suites, according to the No-Free Lunch theorem, this
overestimation does not hold.

In other words, there is an immense number of formulated and unformulated
real-world problems and it is reasonable to think that any of them may have a
wide variety of features not contemplated in any already formulated artificial
test problem.

Thus, the inflexibility of configuring (in an easy way) scalable test problems
with a desirable combination of features, becomes also a limitation of the
existing scalable test suites.

On the other hand, difficult PS topologies (F6) are not considered by most of
the modern test suites, which becomes a limitation.
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Limitations of Current Benchmarks
An important issue to consider in scalable test problems refers to the shape
of the Pareto optimal front. In this regard, the Pareto optimal fronts of the
existing scalable test problems combine a variety of different geometries
including convexity, concavity and/or linearity.

Several of the existing test problems (e.g., from the DTLZ and WFG test
suites) can be characterized by an (M − 1)-simplex. Test problems having
this type of shapes are easy to solve for some evolutionary approaches.

In the specialized literature, we can find several MOPs in which their PF
approximations draw strange geometries that do not follow exactly the shape
of an (M − 1)-simplex, see for example the problems presented in [Dirkx and
Mooij, 2014].

D. Dirkx and E. Mooij, “Optimization of entry-vehicle shapes during
conceptual design”, Acta Astronautica, Vol. 94, No. 1, pp. 198–214, 2014.
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Limitations of Current Benchmarks
Most of the modern test problems do not follow the property of difficult PF
shape (F7) that has been suggested to evaluate diversity mechanisms in
MOEAs. This, in fact, becomes a limitation of the constructed test problems
and motivates to design new geometries different from those included in the
state-of-the-art test suites.

Another important property that should be considered in the construction of
scalable test problems is regarding the correlation between position and
distance functions (F8). Most of the modern test problems do not follow this
property which complicates the identification of position and distance
parameters.

Although there exist approaches employed to correlate position and distance
functions (e.g. the modular approach), the investigation and development of a
more flexible design approach for constructing scalable test problems—where
position and distance variables are indistinguishable and the true PS and PF
can be analytically known—is in fact a good path for future research.
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